
Kinematics is important for the design of the mechanism used on this dump truck.

Chapter 16
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Planar Kinematics 
of a Rigid Body

16.1 Planar Rigid-Body Motion

In this chapter, the planar kinematics of a rigid body will be discussed. 

This study is important for the design of gears, cams, and mechanisms used 

for many mechanical operations. Once the kinematics is thoroughly 

understood, then we can apply the equations of motion, which relate the 

forces on the body to the body’s motion.

The planar motion of a body occurs when all the particles of a rigid 

body move along paths which are equidistant from a fixed plane. There 

are three types of rigid-body planar motion. In order of increasing 

complexity, they are

CHAPTER OBJECTIVES

a fixed axis.

using a translating frame of reference.

using a rotating frame of reference.
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 Translation. This type of motion occurs when a line in the body 

remains parallel to its original orientation throughout the motion. 

When the paths of motion for any two points on the body are 

parallel lines, the motion is called rectilinear translation, Fig. 16–1a. 

If the paths of motion are along curved lines, the motion is called 

curvilinear translation, Fig. 16–1b.

 Rotation about a fixed axis. When a rigid body rotates about a 

fixed axis, all the particles of the body, except those which lie on the 

axis of rotation, move along circular paths, Fig. 16–1c.

General plane motion. When a body is subjected to general plane 

motion, it undergoes a combination of translation and rotation, 

Fig. 16–1d. The translation occurs within a reference plane, and the 

rotation occurs about an axis perpendicular to the reference plane.

In the following sections we will consider each of these motions in detail. 

Examples of bodies undergoing these motions are shown in Fig. 16–2.

Path of rectilinear translation

(a)

Path of curvilinear translation

(b)

Rotation about a fixed axis

(c)

General plane motion

(d)

Fig. 16–1 

r
r

Rotation about a fixed axis

Curvilinear translation
General plane motion

Rectilinear translation

Fig. 16–2 
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16.2 Translation

Consider a rigid body which is subjected to either rectilinear or curvilinear 

translation in the x–y plane, Fig. 16–3.

y

x
O

y¿

x¿
A

B

rB/A

rA

rB

Translating
coordinate system

Fixed
coordinate system

Fig. 16–3 

Position. The locations of points A and B on the body are defined 

with respect to fixed x, y reference frame using position vectors rA  and rB . 

The translating x �, y � coordinate system is fixed in the body and has its 

origin at A, hereafter referred to as the base point. The position of B with 

respect to A is denoted by the relative-position vector rB>A  (“r of B with 

respect to A”). By vector addition,

rB = rA + rB>A
Velocity. A relation between the instantaneous velocities of A and B 

is obtained by taking the time derivative of this equation, which yields 

vB = vA + drB>A >dt. Here vA  and vB denote absolute velocities since  

these vectors are measured with respect to the x, y axes. The term 

drB>A >dt = 0, since the magnitude of rB>A  is constant by definition of a 

rigid body, and because the body is translating the direction of rB>A  is also 

constant. Therefore,

vB = vA

Acceleration. Taking the time derivative of the velocity equation yields 

a similar relationship between the instantaneous accelerations of A and B:

aB = aA

The above two equations indicate that all points in a rigid body 
subjected to either rectilinear or curvilinear translation move with the 
same velocity and acceleration. As a result, the kinematics of particle 

motion, discussed in Chapter 12, can also be used to specify the kinematics 

of points located in a translating rigid body.

Riders on this Ferris wheel are subjected 
to curvilinear translation, since the 
gondolas move in a circular path, yet it 
always remains in the upright position. 
(© R.C. Hibbeler)
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16.3 Rotation about a Fixed Axis

When a body rotates about a fixed axis, any point P located in the body 

travels along a circular path. To study this motion it is first necessary to 

discuss the angular motion of the body about the axis.

Angular Motion. Since a point is without dimension, it cannot 

have angular motion. Only lines or bodies undergo angular motion. For 

example, consider the body shown in Fig. 16–4a and the angular motion 

of a radial line r located within the shaded plane.

Angular Position. At the instant shown, the angular position of  

r is defined by the angle u, measured from a fixed reference line to r.

Angular Displacement. The change in the angular position, which 

can be measured as a differential dU, is called the angular displacement.* 

This vector has a magnitude of dU, measured in degrees, radians, or 

revolutions, where 1 rev = 2p rad. Since motion is about a fixed axis, the 

direction of dU is always along this axis. Specifically, the direction is 

determined by the right-hand rule; that is, the fingers of the right hand are 

curled with the sense of rotation, so that in this case the thumb, or dU, 

points upward, Fig. 16–4a. In two dimensions, as shown by the top view of 

the shaded plane, Fig. 16–4b, both u and du are counterclockwise, and so 

the thumb points outward from the page.

Angular Velocity. The time rate of change in the angular position 

is called the angular velocity V (omega). Since dU occurs during an 

instant of time dt, then,

(a+) v =
du

dt
 (16–1)

This vector has a magnitude which is often measured in rad>s. It is 

expressed here in scalar form since its direction is also along the axis of 

rotation, Fig. 16–4a. When indicating the angular motion in the shaded 

plane, Fig. 16–4b, we can refer to the sense of rotation as clockwise or 

counterclockwise. Here we have arbitrarily chosen counterclockwise 

rotations as positive and indicated this by the curl shown in parentheses 

next to Eq. 16–1. Realize, however, that the directional sense of V is 

actually outward from the page.

O

P

du
u

r

(a)

dU

A

V

O

dU
P

r

(b)

V A

u

Fig. 16–4 
*It is shown in Sec. 20.1 that finite rotations or finite angular displacements are not vector 

quantities, although differential rotations dU are vectors.
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Angular Acceleration. The angular acceleration A (alpha) 

measures the time rate of change of the angular velocity. The magnitude 

of this vector is

(a+) a =
dv

dt
 (16–2)

Using Eq. 16–1, it is also possible to express a as 

(a+) a =
d2u

dt2
 (16–3)

The line of action of A is the same as that for V, Fig. 16–4a; however, its 

sense of direction depends on whether V is increasing or decreasing. If V 

is decreasing, then A is called an angular deceleration and therefore has a 

sense of direction which is opposite to V.

By eliminating dt from Eqs. 16–1 and 16–2, we obtain a differential 

relation between the angular acceleration, angular velocity, and angular 

displacement, namely, 

(a+) a du = v dv  (16–4)

The similarity between the differential relations for angular motion 

and those developed for rectilinear motion of a particle (v = ds>dt, 
a = dv>dt, and a ds = v dv) should be apparent.

Constant Angular Acceleration. If the angular acceleration of 

the body is constant, A = Ac , then Eqs. 16–1, 16–2, and 16–4, when 

integrated, yield a set of formulas which relate the body’s angular velocity, 

angular position, and time. These equations are similar to Eqs. 12–4 to 12–6 

used for rectilinear motion. The results are 

(a+)  v = v0 + act  (16–5)

(a+)  u = u0 + v0t + 1
2 act

2  (16–6)

(a+)  v2 = v0
2 + 2ac(u - u0) (16–7)

Constant Angular Acceleration

Here u0 and v0 are the initial values of the body’s angular position and 

angular velocity, respectively.

The gears used in the operation of a crane 
all rotate about fixed axes. Engineers 
must be able to relate their angular 
motions in order to properly design this 
gear system. (© R.C. Hibbeler)
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Motion of Point P. As the rigid body in Fig. 16–4c rotates, point P 

travels along a circular path of radius r with center at point O. This path 

is contained within the shaded plane shown in top view, Fig. 16–4d.

Position and Displacement. The position of P is defined by the 

position vector r, which extends from O to P. If the body rotates du then P 

will displace ds = r du.

Velocity. The velocity of P has a magnitude which can be found by 

dividing ds = r du by dt so that

 v = vr  (16–8)

As shown in Figs. 16–4c and 16–4d, the direction of v is tangent to the 

circular path.

Both the magnitude and direction of v can also be accounted for by 

using the cross product of V and rP (see Appendix B). Here, rP is directed 

from any point on the axis of rotation to point P, Fig. 16–4c. We have

 v = V * rP  (16–9)

The order of the vectors in this formulation is important, since the 

cross product is not commutative, i.e., V * rP � rP * V. Notice in 

Fig. 16–4c how the correct direction of v is established by the right-hand 

rule. The fingers of the right hand are curled from V toward rP (V “cross” rP). 

The thumb indicates the correct direction of v, which is tangent to the 

path in the direction of motion. From Eq. B–8, the magnitude of v in  

Eq. 16–9 is v = vrP sin f, and since r = rP sin f, Fig. 16–4c, then v = vr, 
which agrees with Eq. 16–8. As a special case, the position vector r can 

be chosen for rP. Here r lies in the plane of motion and again the 

velocity of point P is

 v = V * r (16–10)

O

P
r

(c)

v

rP

V

f

dU

ds

(d)

O

P

r v

Fig. 16–4 (cont.) 
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Acceleration. The acceleration of P can be expressed in terms of its 

normal and tangential components. Applying Eq. 12–19 and Eq. 12–20, 

at = dv>dt and an = v2>r, where r = r, v = vr, and a = dv>dt, we get

 at = ar  (16–11)

 an = v2r  (16–12)

The tangential component of acceleration, Figs. 16–4e and 16–4f, 
represents the time rate of change in the velocity’s magnitude. If the speed 

of P is increasing, then at acts in the same direction as v; if the speed is 

decreasing, at acts in the opposite direction of v; and finally, if the speed is 

constant, at is zero.

The normal component of acceleration represents the time rate of 

change in the velocity’s direction. The direction of an is always toward O, 

the center of the circular path, Figs. 16–4e and 16–4f.
Like the velocity, the acceleration of point P can be expressed in terms 

of the vector cross product. Taking the time derivative of Eq. 16–9 

we have

a =
dv
dt

=
dV

dt
* rP + V *

drP

dt

Recalling that A = dV>dt, and using Eq. 16–9 (drP>dt = v = V * rP), 

yields

 a = A * rP + V * (V * rP) (16–13)

From the definition of the cross product, the first term on the right has a 

magnitude at = arP sin f = ar, and by the right-hand rule, A * rP is in the 

direction of at , Fig. 16–4e. Likewise, the second term has a magnitude 

an = v2rP sin f = v2r, and applying the right-hand rule twice, first to 

determine the result vP = V * rP then V * vP, it can be seen that this 

result is in the same direction as an, shown in Fig. 16–4e. Noting that this 

is also the same direction as -r, which lies in the plane of motion, we can 

express an in a much simpler form as an = -v2r. Hence, Eq. 16–13 can be 

identified by its two components as

 
a = at + an

  = A * r - v2r
 (16–14)

Since at and an are perpendicular to one another, if needed the magnitude 

of acceleration can be determined from the Pythagorean theorem; namely, 

a = 2an
2 + at

2, Fig. 16–4f.
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Fig. 16–4 (cont.) 
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Fig. 16–5

If two rotating bodies contact one another, then the points in contact move 

along different circular paths, and the velocity and tangential components 

of acceleration of the points will be the same: however, the normal 
components of acceleration will not be the same. For example, consider 

the two meshed gears in Fig. 16–5a. Point A is located on gear B and 

a coincident point A¿ is located on gear C. Due to the rotational motion, 

vA = vA¿, Fig. 16–5b, and as a result, vBrB = vCrC or vB = vC(rC>rB). Also, 

from Fig. 16–5c, (aA)t = (aA¿)t, so that aB = aC(rC>rB); however, since both 

points follow different circular paths, (aA)n Z (aA¿)n and therefore, as 

shown, aA Z aA¿.

Important Points

  A body can undergo two types of translation. During rectilinear 

translation all points follow parallel straight-line paths, and 

during curvilinear translation the points follow curved paths that 

are the same shape.

  All the points on a translating body move with the same velocity 

and acceleration.

  Points located on a body that rotates about a fixed axis follow 

circular paths.

  The relation a du = v dv is derived from a = dv>dt and 

v = du>dt by eliminating dt.

  Once angular motions v and a are known, the velocity and 

acceleration of any point on the body can be determined.

  The velocity always acts tangent to the path of motion.

  The acceleration has two components. The tangential acceleration 

measures the rate of change in the magnitude of the velocity and 

can be determined from at = ar. The normal acceleration 

measures the rate of change in the direction of the velocity and 

can be determined from an = v2r.
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Procedure for Analysis

The velocity and acceleration of a point located on a rigid body that 

is rotating about a fixed axis can be determined using the following 

procedure.

Angular Motion.

  Establish the positive sense of rotation about the axis of rotation 

and show it alongside each kinematic equation as it is applied.

  If a relation is known between any two of the four variables a, v, u, 

and t, then a third variable can be obtained by using one of the 

following kinematic equations which relates all three variables.

v =
du

dt
  a =

dv

dt
  a du = v dv

  If the body’s angular acceleration is constant, then the following 

equations can be used:

 v = v0 + act

 u = u0 + v0t + 1
2 act

2

 v2 = v0
2 + 2ac(u - u0)

  Once the solution is obtained, the sense of u, v, and a is 

determined from the algebraic signs of their numerical quantities.

Motion of Point P.

  In most cases the velocity of P and its two components of 

acceleration can be determined from the scalar equations

 v = vr

 at = ar

 an = v2r

  If the geometry of the problem is difficult to visualize, the 

following vector equations should be used:

 v = V * rP = V * r

 at = A * rP = A * r

 an = V * (V * rP) = -v2r

  Here rP is directed from any point on the axis of rotation to 

point P, whereas r lies in the plane of motion of P. Either of these 

vectors, along with V and A, should be expressed in terms of its 

i, j, k components, and, if necessary, the cross products determined 

using a determinant expansion (see Eq. B–12).
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A cord is wrapped around a wheel in Fig. 16–6, which is initially at rest 

when u = 0. If a force is applied to the cord and gives it an acceleration 

a = (4t) m>s2, where t is in seconds, determine, as a function of time, 

(a) the angular velocity of the wheel, and (b) the angular position of 

line OP in radians.

SOLUTION
Part (a). The wheel is subjected to rotation about a fixed axis passing 

through point O. Thus, point P on the wheel has motion about a circular 

path, and the acceleration of this point has both tangential and normal 

components. The tangential component is (aP)t = (4t) m>s2, since the 

cord is wrapped around the wheel and moves tangent to it. Hence the 

angular acceleration of the wheel is

(c+)  (aP)t = ar

  (4t) m>s2 = a(0.2 m)

  a = (20t) rad>s2b 

Using this result, the wheel’s angular velocity v can now be 

determined from a = dv>dt, since this equation relates a, t, and v. 

Integrating, with the initial condition that v = 0 when t = 0, yields

(c+)  a =
dv

dt
= (20t) rad>s2

  L
v

0

dv = L
t

0

20t dt

  v = 10t2 rad>sb  Ans.

Part (b). Using this result, the angular position u of OP can be found 

from v = du>dt, since this equation relates u, v, and t. Integrating, with 

the initial condition u = 0 when t = 0, we have

(c+) 
du

dt
= v = (10t2) rad>s

  L
u

0

du = L
t

0

10t2 dt

  u = 3.33t3 rad  Ans.

NOTE: We cannot use the equation of constant angular acceleration, 

since a is a function of time.

EXAMPLE   16.1

F

0.2 m

P

a

O
u

Fig. 16–6
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The motor shown in the photo is used to turn a wheel and attached 

blower contained within the housing. The details are shown in 

Fig. 16–7a. If the pulley A connected to the motor begins to rotate 

from rest with a constant angular acceleration of aA = 2 rad>s2, 

determine the magnitudes of the velocity and acceleration of point P 

on the wheel, after the pulley has turned two revolutions. Assume 

the transmission belt does not slip on the pulley and wheel.

SOLUTION
Angular Motion. First we will convert the two revolutions to radians. 

Since there are 2p rad in one revolution, then

uA = 2 rev a 2p rad

1 rev
b = 12.57 rad

Since aA is constant, the angular velocity of pulley A is therefore

(c+)  v2 = v0
2 + 2ac(u - u0)

  vA
2 = 0 + 2(2 rad>s2)(12.57 rad - 0)

  vA = 7.090 rad>s
The belt has the same speed and tangential component of 

acceleration as it passes over the pulley and wheel. Thus,

v = vArA = vBrB; 7.090 rad>s (0.15 m) = vB(0.4 m)

vB = 2.659 rad>s
at = aArA = aBrB; 2 rad>s2 (0.15 m) = aB(0.4 m)

aB = 0.750 rad>s2

Motion of P. As shown on the kinematic diagram in Fig. 16–7b,  

we have

  vP = vBrB = 2.659 rad>s (0.4 m) = 1.06 m>s  Ans.

  (aP)t = aBrB = 0.750 rad>s2 (0.4 m) = 0.3 m>s2

  (aP)n = vB
2rB = (2.659 rad>s)2(0.4 m) = 2.827 m>s2

Thus

    aP = 2(0.3 m>s2)2 + (2.827 m>s2)2 = 2.84 m>s2 Ans.

P

A

B

(a)

0.4 m

0.15 m
aA � 2 rad/s2

(b)

P

aP

(aP)t

vP

(aP)n

Fig. 16–7

EXAMPLE   16.2

(© R.C. Hibbeler)
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F16–4.  The bucket is hoisted by the rope that wraps around 

a drum wheel. If the angular displacement of the wheel is 

u = (0.5t3 + 15t) rad, where t is in seconds, determine the 

velocity and acceleration of the bucket when t = 3 s. 

0.75 ft

v

u

Prob. F16–4

F16–5.  A wheel has an angular acceleration of 

a = (0.5 u) rad>s2, where u is in radians. Determine the 

magnitude of the velocity and acceleration of a point P 

located on its rim after the wheel has rotated 2 revolutions. 

The wheel has a radius of 0.2 m and starts at v0 = 2 rad>s. 

F16–6.  For a short period of time, the motor turns gear A 

with a constant angular acceleration of aA = 4.5 rad>s2, 

starting from rest. Determine the velocity of the cylinder and 

the distance it travels in three seconds. The cord is wrapped 

around pulley D which is rigidly attached to gear B. 

A

B
P P¿

D

C

 75 mm
225 mm

 125 mm

aA � 4.5 rad/s2

Prob. F16–6

F16–1.  When the gear rotates 20 revolutions, it achieves 

an angular velocity of v = 30 rad>s, starting from rest. 

Determine its constant angular acceleration and the time 

required. 

v
u

Prob. F16–1

F16–2.  The flywheel rotates with an angular velocity of 

v = (0.005u2) rad>s, where u is in radians. Determine the 

angular acceleration when it has rotated 20 revolutions. 

v u

Prob. F16–2

F16–3.  The flywheel rotates with an angular velocity of 

v = (4 u1>2) rad>s, where u is in radians. Determine the time 

it takes to achieve an angular velocity of v = 150 rad>s. 

When t = 0, u = 1 rad. 

v

u

Prob. F16–3

FUNDAMENTAL PROBLEMS
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16–5. The disk is driven by a motor such that the angular 

position of the disk is defined by u = (20t + 4t 2) rad, where t 
is in seconds. Determine the number of revolutions, the angular 

velocity, and angular acceleration of the disk when t = 90 s.

0.5 ft

u

Prob. 16–5

16–6. A wheel has an initial clockwise angular velocity of  

10 rad>s and a constant angular acceleration of 3 rad>s2. 

Determine the number of revolutions it must undergo to acquire 

a clockwise angular velocity of 15 rad>s. What time is required?

16–7. If gear A rotates with a constant angular acceleration 

of aA = 90 rad>s2, starting from rest, determine the time 

required for gear D to attain an angular velocity of 600 rpm. 

Also, find the number of revolutions of gear D to attain this 

angular velocity. Gears A, B, C, and D have radii of 15 mm, 

50 mm, 25 mm, and 75 mm, respectively.

*16–8. If gear A rotates with an angular velocity of 

vA = (uA + 1) rad>s, where uA is the angular displacement 

of gear A, measured in radians, determine the angular 

acceleration of gear D when uA = 3 rad, starting from rest. 

Gears A, B, C, and D have radii of 15 mm, 50 mm, 25 mm, 

and 75 mm, respectively.

D A

B

C

F

Probs. 16–7/8

16–1. The angular velocity of the disk is defined by 

v = (5t2 + 2) rad>s, where t is in seconds. Determine the 

magnitudes of the velocity and acceleration of point A on 

the disk when t = 0.5 s.

A

0.8 m

Prob. 16–1

16–2. The angular acceleration of the disk is defined by  

a = 3t2 + 12 rad>s, where t is in seconds. If the disk is 

originally rotating at v0 = 12 rad>s, determine the 

magnitude of the velocity and the n and t components of 

acceleration of point A on the disk when t = 2 s.

16–3. The disk is originally rotating at v0 = 12 rad>s. 
If  it is subjected to a constant angular acceleration of  

a = 20 rad>s2, determine the magnitudes of the velocity 

and the n and t components of acceleration of point A at 

the instant t = 2 s.

*16–4. The disk is originally rotating at v0 = 12 rad>s.  
If it is subjected to a constant angular acceleration of  

a = 20 rad>s2, determine the magnitudes of the velocity 

and the n and t components of acceleration of point B when 

the disk undergoes 2 revolutions.

0.4 m

0.5 m

B

A

v0 � 12 rad/s 

Probs. 16–2/3/4

PROBLEMS
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16–9. At the instant vA = 5 rad>s, pulley A is given an 

angular acceleration a = (0.8u) rad>s2, where u is in radians. 

Determine the magnitude of acceleration of point B on 

pulley C when A rotates 3 revolutions. Pulley C has an inner 

hub which is fixed to its outer one and turns with it.

16–10. At the instant vA = 5 rad>s, pulley A is given a 

constant angular acceleration aA = 6 rad>s2. Determine 

the magnitude of acceleration of point B on pulley C when 

A rotates 2 revolutions. Pulley C has an inner hub which is 

fixed to its outer one and turns with it.

50 mm

40 mm

60 mm

B

A

C

vA 
aA 

Probs. 16–9/10

16–11. The cord, which is wrapped around the disk, is given 

an acceleration of a = (10t) m>s2, where t is in seconds. 

Starting from rest, determine the angular displacement, 

angular velocity, and angular acceleration of the disk when 

t = 3 s.

a � (10t) m/s2

0.5 m

Prob. 16–11

*16–12. The power of a bus engine is transmitted using the 

belt-and-pulley arrangement shown. If the engine turns 

pulley A at vA = (20t + 40) rad>s, where t is in seconds, 

determine the angular velocities of the generator pulley B 

and the air-conditioning pulley C when t = 3 s.

16–13. The power of a bus engine is transmitted using the 

belt-and-pulley arrangement shown. If the engine turns 

pulley A at vA = 60 rad>s, determine the angular velocities 

of the generator pulley B and the air-conditioning pulley C. 

The hub at D is rigidly connected to B and turns with it.

B
D

C
A

25 mm

75 mm

50 mm

100 mm

vA

vB

vC

Probs. 16–12/13

16–14. The disk starts from rest and is given an angular 

acceleration a = (2t 2) rad>s2, where t is in seconds. 

Determine the angular velocity of the disk and its angular 

displacement when t = 4 s.

16–15. The disk starts from rest and is given an angular 

acceleration a = (5t1>2) rad>s2, where t is in seconds. 

Determine the magnitudes of the normal and tangential 

components of acceleration of a point P on the rim of the 

disk when t = 2 s.

*16–16. The disk starts at v0 = 1 rad>s when u = 0, and is 

given an angular acceleration a = (0.3u) rad>s2, where u is 

in radians. Determine the magnitudes of the normal and 

tangential components of acceleration of a point P on the 

rim of the disk when u = 1 rev.

0.4 m

P

Probs. 16–14/15/16
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16–17. A motor gives gear A an angular acceleration of  

aA = (2 + 0.006 u2) rad>s2, where u is in radians. If this 

gear is initially turning at vA = 15 rad>s, determine the 

angular velocity of gear B after A undergoes an angular 

displacement of 10 rev.

16–18. A motor gives gear A an angular acceleration of  

aA = (2t3) rad>s2, where t is in seconds. If this gear is 

initially turning at vA = 15 rad>s, determine the angular 

velocity of gear B when t = 3 s.

B
175 mm

100 mm

A

aA
vA

aB

Probs. 16–17/18

16–19. The vacuum cleaner’s armature shaft S rotates with 

an angular acceleration of a = 4v3>4 rad>s2, where v is in 

rad>s. Determine the brush’s angular velocity when t = 4 s, 

starting from v0 = 1 rad>s, at u = 0. The radii of the shaft 

and the brush are 0.25 in. and 1 in., respectively. Neglect the 

thickness of the drive belt.

A S A S

Prob. 16–19

*16–20. A motor gives gear A an angular acceleration of  

aA = (4t3) rad>s2, where t is in seconds. If this gear is 

initially turning at (vA)0 = 20 rad>s, determine the angular 

velocity of gear B when t = 2 s.

A

B

0.15 m

0.05 m

(vA)0 � 20 rad/s

aA

Prob. 16–20

16–21. The motor turns the disk with an angular velocity 

of v = (5t2 + 3t) rad>s, where t is in seconds. Determine 

the magnitudes of the velocity and the n and t components 

of acceleration of the point A on the disk when t = 3 s.

u

150 mm

A

Prob. 16–21
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16–22. If the motor turns gear A with an angular 

acceleration of aA = 2 rad>s2 when the angular velocity is  

vA = 20 rad>s, determine the angular acceleration and 

angular velocity of gear D.

A

B

C

D

50 mm

100 mm

100 mm

40 mm
vA

Prob. 16–22

16–23. If the motor turns gear A with an angular 

acceleration of aA = 3 rad>s2 when the angular velocity is  

vA = 60 rad>s, determine the angular acceleration and 

angular velocity of gear D.

A

B

C

D

50 mm

100 mm

100 mm

40 mm
vA

Prob. 16–23

*16–24. The gear A on the drive shaft of the outboard 

motor has a radius rA = 0.5 in. and the meshed pinion 

gear  B on the propeller shaft has a radius rB = 1.2 in. 

Determine the angular velocity of the propeller in t = 1.5 s, 

if the drive shaft rotates with an angular acceleration 

a = (400t3) rad>s2, where t is in seconds. The propeller is 

originally at rest and the motor frame does not move.

16–25. For the outboard motor in Prob. 16–24, determine 

the magnitude of the velocity and acceleration of point P 

located on the tip of the propeller at the instant t = 0.75 s.

2.20 in.

P

B

A

Probs. 16–24/25

16–26. The pinion gear A on the motor shaft is given a 

constant angular acceleration a = 3 rad>s2. If the gears A 

and B have the dimensions shown, determine the angular 

velocity and angular displacement of the output shaft C, 

when t = 2 s starting from rest. The shaft is fixed to B and 

turns with it.

C

125 mm

35 mm
A

B

Prob. 16–26
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16–27. The gear A on the drive shaft of the outboard motor 

has a radius rA = 0.7 in. and the meshed pinion gear B on 

the propeller shaft has a radius rB = 1.4 in. Determine the 

angular velocity of the propeller in t = 1.3 s if the drive shaft 

rotates with an angular acceleration a = (3001t) rad>s2, 

where t is in seconds. The propeller is originally at rest and 

the motor frame does not move.

2.2 in.

P

B

A

Prob. 16–27

*16–28. The gear A on the drive shaft of the outboard 

motor has a radius rA = 0.7 in. and the meshed pinion gear 

B on the propeller shaft has a radius rB = 1.4 in. Determine 

the magnitudes of the velocity and acceleration of a point P 

located on the tip of the propeller at the instant t = 0.75 s. 

The drive shaft rotates with an angular acceleration a =
(3001t) rad>s2, where t is in seconds. The propeller is 

originally at rest and the motor frame does not move.

2.2 in.

P

B

A

Prob. 16–28

16–29. A stamp S, located on the revolving drum, is used 

to label canisters. If the canisters are centered 200 mm apart 

on the conveyor, determine the radius rA of the driving 

wheel A and the radius rB of the conveyor belt drum so that 

for each revolution of the stamp it marks the top of a 

canister. How many canisters are marked per minute if the 

drum at B is rotating at vB = 0.2 rad>s? Note that the 

driving belt is twisted as it passes between the wheels.

200 mm

A

B

rA

rB

rB

S

B � 0.2 rad/sv

Prob. 16–29

16–30. At the instant shown, gear A is rotating with a 

constant angular velocity of vA = 6 rad>s. Determine the 

largest angular velocity of gear B and the maximum speed 

of point C.

100 mm

B

C

A

100 mm

100 mm

100 mm

B
A� 6 rad/s

v
v

Prob. 16–30
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16–31. Determine the distance the load W is lifted in t = 5 s 

using the hoist. The shaft of the motor M turns with an angular 

velocity v = 100(4 + t) rad>s, where t is in seconds.

W

300 mm

30 mm

50 mm 225 mm

B

A

E

C

D

40 mm

M

Prob. 16–31

*16–32. The driving belt is twisted so that pulley B rotates 

in the opposite direction to that of drive wheel A. If A has a 

constant angular acceleration of aA = 30 rad>s2, determine 

the tangential and normal components of acceleration of 

a  point located at the rim of B when t = 3 s, starting 

from rest.

A

B
125 mm200 mm

vA

vB

Prob. 16–32

16–33. The driving belt is twisted so that pulley B rotates 

in the opposite direction to that of drive wheel A. If the 

angular displacement of A is uA = (5t3 + 10t2) rad, where t 
is in seconds, determine the angular velocity and angular 

acceleration of B when t = 3 s.

A

B
125 mm200 mm

vA

vB

Prob. 16–33

16–34. For a short time a motor of the random-orbit 

sander drives the gear A with an angular velocity of  

vA = 40(t3 + 6t) rad>s, where t is in seconds. This gear is 

connected to gear B, which is fixed connected to the shaft 

CD. The end of this shaft is connected to the eccentric 

spindle EF and pad P, which causes the pad to orbit around 

shaft CD at a radius of 15 mm. Determine the magnitudes of 

the velocity and the tangential and normal components of 

acceleration of the spindle EF when t = 2 s after starting 

from rest.

40 mm

10 mm

15 mm

A

B

CC

D

E

F

P

VA

Prob. 16–34
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16–35. If the shaft and plate rotates with a constant 

angular velocity of v = 14 rad>s, determine the velocity 

and acceleration of point C located on the corner of the 

plate at the instant shown. Express the result in Cartesian 

vector form.

x y

C
O

D

B

z

0.2 m

0.3 m
0.3 m

0.4 m

0.4 m

0.6 m

A
v

a

Prob. 16–35

*16–36. At the instant shown, the shaft and plate rotates 

with an angular velocity of v = 14 rad>s and angular 

acceleration of a = 7 rad>s2. Determine the velocity and 

acceleration of point D located on the corner of the plate at 

this instant. Express the result in Cartesian vector form.

x y

C
O

D

B

z

0.2 m

0.3 m
0.3 m

0.4 m

0.4 m

0.6 m

A
v

a

Prob. 16–36

16–37. The rod assembly is supported by ball-and-socket 

joints at A and B. At the instant shown it is rotating about 

the y axis with an angular velocity v = 5 rad>s and has an 

angular acceleration a = 8 rad>s2. Determine the 

magnitudes of the velocity and acceleration of point C at 

this instant. Solve the problem using Cartesian vectors and 

Eqs. 16–9 and 16–13.

0.3 m

z

x

y
A

C

B
0.4 m

0.4 m

a v

Prob. 16–37

16–38. The sphere starts from rest at u = 0° and rotates 

with an angular acceleration of a = (4u + 1) rad>s2, where 

u is in radians. Determine the magnitudes of the velocity 

and acceleration of point P on the sphere at the instant  

u = 6 rad.

P

r � 8 in.

30�

Prob. 16–38
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A

C

B

a

b

s

u

The dumping bin on the truck rotates 
about a fixed axis passing through the 
pin at A. It is operated by the extension 
of the hydraulic cylinder BC. The 
angular position of the bin can be 
specified using the angular position 
coordinate u, and the position of point C 
on the bin is specified using the 
rectilinear position coordinate s. Since a 
and b are fixed lengths, then the two 
coordinates can be related by the 

cosine law,  s = 2a2 + b2 - 2ab cos u. 
The time derivative of this equation 
relates the speed at which the hydraulic 
cylinder extends to the angular velocity 
of the bin. (© R.C. Hibbeler)

16.4 Absolute Motion Analysis

A body subjected to general plane motion undergoes a simultaneous 

translation and rotation. If the body is represented by a thin slab, the slab 

translates in the plane of the slab and rotates about an axis perpendicular 

to this plane. The motion can be completely specified by knowing both the 

angular rotation of a line fixed in the body and the motion of a point on 

the body. One way to relate these motions is to use a rectilinear position 

coordinate s to locate the point along its path and an angular position 

coordinate u to specify the orientation of the line. The two coordinates are 

then related using the geometry of the problem. By direct application of 

the time-differential equations v = ds>dt, a = dv>dt, v = du>dt, and 

a = dv>dt, the motion of the point and the angular motion of the line can 

then be related. This procedure is similar to that used to solve dependent 

motion problems involving pulleys, Sec. 12.9. In some cases, this same 

procedure may be used to relate the motion of one body, undergoing 

either rotation about a fixed axis or translation, to that of a connected 

body undergoing general plane motion.

Procedure for Analysis

The velocity and acceleration of a point P undergoing rectilinear 

motion can be related to the angular velocity and angular acceleration 

of a line contained within a body using the following procedure.

Position Coordinate Equation.
  Locate point P on the body using a position coordinate s, which is 

measured from a fixed origin and is directed along the straight-line 
path of motion of point P.

  Measure from a fixed reference line the angular position u of a 

line lying in the body.

  From the dimensions of the body, relate s to u, s = f(u), using 

geometry and/or trigonometry.

Time Derivatives.
  Take the first derivative of s = f(u) with respect to time to get a 

relation between v and v.

  Take the second time derivative to get a relation between a and a.

  In each case the chain rule of calculus must be used when taking 

the time derivatives of the position coordinate equation. See 

Appendix C.
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The end of rod R shown in Fig. 16–8 maintains contact with the cam by 

means of a spring. If the cam rotates about an axis passing through 

point O with an angular acceleration A and angular velocity V, 

determine the velocity and acceleration of the rod when the cam is in 

the arbitrary position u.

EXAMPLE   16.3

A

O
C

rr

B
x

R

u

V

A

Fig. 16–8

SOLUTION
Position Coordinate Equation. Coordinates u and x are chosen in 

order to relate the rotational motion of the line segment OA on the cam 

to the rectilinear translation of the rod. These coordinates are measured 

from the fixed point O and can be related to each other using 

trigonometry. Since OC = CB = r cos u, Fig. 16–8, then

x = 2r cos u

Time Derivatives. Using the chain rule of calculus, we have

  
dx

dt
= -2r(sin u)

du

dt

  v = -2rv sin u Ans.

  
dv

dt
= -2ra dv

dt
b  sin u - 2rv(cos u)

du

dt

  a = -2r(a sin u + v2 cos  u)  Ans.

NOTE: The negative signs indicate that v and a are opposite to the 

direction of positive x. This seems reasonable when you visualize  

the motion.
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At a given instant, the cylinder of radius r, shown in Fig. 16–9, has an 

angular velocity V and angular acceleration A. Determine the velocity 

and acceleration of its center G if the cylinder rolls without slipping.

sG

G
r

A¿

B A
sG � ru

G¿
uu

V

A

Fig. 16–9

SOLUTION
Position Coordinate Equation. The cylinder undergoes general 

plane motion since it simultaneously translates and rotates. By 

inspection, point G moves in a straight line to the left, from G to G�, as 

the cylinder rolls, Fig. 16–9. Consequently its new position G� will be 

specified by the horizontal position coordinate sG , which is measured 

from G to G�. Also, as the cylinder rolls (without slipping), the arc length 

A�B on the rim which was in contact with the ground from A to B,  

is equivalent to sG. Consequently, the motion requires the radial line GA 

to rotate u to the position G�A�. Since the arc A�B = ru, then G travels 

a distance

 sG = ru

Time Derivatives. Taking successive time derivatives of this 

equation, realizing that r is constant, v = du>dt, and a = dv>dt, gives 

the necessary relationships:

  sG = ru

  vG = rv Ans.

  aG = ra Ans.

NOTE: Remember that these relationships are valid only if the cylinder 

(disk, wheel, ball, etc.) rolls without slipping.

EXAMPLE   16.4
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EXAMPLE   16.5

1 m

1 m

2 m

s

B

O

A

u

Fig. 16–10

The large window in Fig. 16–10 is opened using a hydraulic cylinder AB. 

If the cylinder extends at a constant rate of 0.5 m>s, determine the 

angular velocity and angular acceleration of the window at the instant 

u = 30�.

SOLUTION
Position Coordinate Equation. The angular motion of the window 

can be obtained using the coordinate u, whereas the extension or motion 

along the hydraulic cylinder is defined using a coordinate s, which 

measures its length from the fixed point A to the moving point B.  

These coordinates can be related using the law of cosines, namely,

 s2 = (2 m)2 + (1 m)2 - 2(2 m)(1 m) cos u

 s2 = 5 - 4 cos u (1)

When u = 30�,

 s = 1.239 m

Time Derivatives. Taking the time derivatives of Eq. 1, we have

  2s 
ds

dt
= 0 - 4(-sin u) 

du

dt

  s(vs) = 2(sin u)v  (2)

Since vs = 0.5 m>s, then at u = 30�,

 (1.239 m)(0.5 m>s) = 2 sin 30�v

 v = 0.6197 rad>s = 0.620 rad>s Ans.

Taking the time derivative of Eq. 2 yields 

  
ds

dt
 vs + s 

dvs

dt
= 2(cos u) 

du

dt
 v + 2(sin u) 

dv

dt

  vs
2 + sas = 2(cos u)v2 + 2(sin u)a

Since as = dvs>dt = 0, then

  (0.5 m>s)2 + 0 = 2 cos 30�(0.6197 rad>s)2 + 2 sin 30�a

  a = -0.415 rad>s2 Ans.

Because the result is negative, it indicates the window has an angular 

deceleration.
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16–41. At the instant u = 50�, the slotted guide is moving 

upward with an acceleration of 3 m>s2 and a velocity of  

2 m>s. Determine the angular acceleration and angular 

velocity of link AB at this instant. Note: The upward motion 

of the guide is in the negative y direction.

300 mm

y

v � 2 m/s
a � 3 m/s2

A

B

u

v, a

Prob. 16–41

16–42. At the instant shown, u = 60°, and rod AB is   

subjected to a deceleration of 16 m>s2 when the velocity is 

10  m>s. Determine the angular velocity and angular 

acceleration of link CD at this instant.

300 mm300 mm

DB

x

C

A

v � 10 m/s

a � 16 m/s2

uu

Prob. 16–42

16–39. The end A of the bar is moving downward along 

the slotted guide with a constant velocity vA. Determine the 

angular velocity V and angular acceleration A of the bar as 

a function of its position y.

y

B

r

vA A

V, A

U

Prob. 16–39

*16–40. At the instant u = 60°, the slotted guide rod is 

moving to the left with an acceleration of 2 m>s2 and a 

velocity of 5 m>s. Determine the angular acceleration and 

angular velocity of link AB at this instant.

200 mm

v � 5 m/s
a � 2 m/s2

A

B

u

Prob. 16–40

PROBLEMS
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16–43. The crank AB is rotating with a constant angular 

velocity of 4 rad>s. Determine the angular velocity of the 

connecting rod CD at the instant u = 30�.

u

A

C

B

D
4 rad/s

600 mm

300 mm

Prob. 16–43

*16–44. Determine the velocity and acceleration of the 

follower rod CD as a function of u when the contact 

between the cam and follower is along the straight region 

AB on the face of the cam. The cam rotates with a constant 

counterclockwise angular velocity V.

A

C

B

Dr
O

u

v

Prob. 16–44

16–45. Determine the velocity of rod R for any angle u of 

the cam C if the cam rotates with a constant angular 

velocity  V. The pin connection at O does not cause an 

interference with the motion of A on C.

u

v

C

R

r2

r1

A

O

x

Prob. 16–45

16–46. The circular cam rotates about the fixed point O 

with a constant angular velocity V. Determine the velocity 

v of the follower rod AB as a function of u.

A B

R

d

r

v

u
O

v

Prob. 16–46

16–47. Determine the velocity of the rod R for any  

angle u of cam C as the cam rotates with a constant angular 

velocity V. The pin connection at O does not cause an 

interference with the motion of plate A on C.

uR

A

C
r

O

x

V

Prob. 16–47

*16–48. Determine the velocity and acceleration of the  

peg A which is confined between the vertical guide and the 

rotating slotted rod.

A

b

O

v

a

u

Prob. 16–48
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16–49. Bar AB rotates uniformly about the fixed pin A 

with a constant angular velocity V. Determine the velocity 

and acceleration of block C, at the instant u = 60�.

L

A

L

L

C

B

v

u

Prob. 16–49

16–50. The center of the cylinder is moving to the left with 

a constant velocity v0. Determine the angular velocity V 

and angular acceleration A of the bar. Neglect the thickness 

of the bar.

u

V
A r 

vO
O

Prob. 16–50

16–51. The pins at A and B are confined to move in the 

vertical and horizontal tracks. If the slotted arm is causing A 

to move downward at vA, determine the velocity of B at the 

instant shown.

90�
y

d

h

x

B

A

vA

u

Prob. 16–51 

*16–52. The crank AB has a constant angular velocity V. 

Determine the velocity and acceleration of the slider at C as 

a function of u. Suggestion: Use the x coordinate to express 

the motion of C and the f coordinate for CB. x = 0 when  

f = 0°.

C

B

bl

x

x

y

A

f u

v

Prob. 16–52
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16–53. If the wedge moves to the left with a constant 

velocity v, determine the angular velocity of the rod as a 

function of u.

L

v

fu

Prob. 16–53

16–54. The crate is transported on a platform which rests 

on rollers, each having a radius r. If the rollers do not slip, 

determine their angular velocity if the platform moves 

forward with a velocity v.

v

vr

Prob. 16–54

16–55. Arm AB has an angular velocity of V and an 

angular acceleration of A. If no slipping occurs between the 

disk D and the fixed curved surface, determine the angular 

velocity and angular acceleration of the disk.

B
R

A
D

C

r

ω, a

v¿, a¿

Prob. 16–55

*16–56. At the instant shown, the disk is rotating with an 

angular velocity of V and has an angular acceleration of A. 

Determine the velocity and acceleration of cylinder B at 

this instant. Neglect the size of the pulley at C.

3 ft

5 ft

A

V, A C
u

B

Prob. 16–56
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drA

drB

rB/A

A
A

BB

(b)

General plane
motion

Time t Time t � dt

A

B drB

drA

drA

rB/A

x¿

y¿
y¿

(c)

B¿

B

A
x¿

rB/A

drB/A

RotationTranslation

du

16.5 Relative-Motion Analysis: Velocity

The general plane motion of a rigid body can be described as a 

combina tion of translation and rotation. To view these “component” 

motions separately we will use a relative-motion analysis involving two sets 

of coordinate axes. The x, y coordinate system is fixed and measures the 

absolute position of two points A and B on the body, here represented as 

a bar, Fig. 16–11a. The origin of the x�, y� coordinate system will be 

attached to the selected “base point” A, which generally has a known 

motion. The axes of this coordinate system translate with respect to the 

fixed frame but do not rotate with the bar.

Position. The position vector rA in Fig. 16–11a specifies the location 

of the “base point” A, and the relative-position vector rB>A locates point B 

with respect to point A. By vector addition, the position of B is then

rB = rA + rB>A
Displacement. During an instant of time dt, points A and B 

undergo displacements drA and drB as shown in Fig. 16–11b. If we 

consider the general plane motion by its component parts then the entire 
bar first translates by an amount drA so that A, the base point, moves to 

its final position and point B moves to B�, Fig. 16–11c. The bar is then 

rotated about A by an amount du so that B� undergoes a relative 
displacement drB>A and thus moves to its final position B. Due to the 

rotation about A, drB>A = rB>A du, and the displacement of B is

drB = drA + drB>A
due to rotation about A

due to translation of A
due to translation and rotation

B

A
x¿

y¿

y

x

rB

rA

rB/A

O
Fixed reference

Translating
reference

(a)

Fig. 16–11 
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Velocity. To determine the relation between the velocities of points A 

and B, it is necessary to take the time derivative of the position equation, 

or simply divide the displacement equation by dt. This yields

drB

dt
=

drA

dt
+

drB>A
dt

The terms drB>dt = vB and drA>dt = vA are measured with respect to 

the fixed x, y axes and represent the absolute velocities of points A and B, 

respectively. Since the relative displacement is caused by a rotation, the 

magnitude of the third term is drB>A>dt = rB>A du>dt =  rB>Au# = rB>Av, 

where v is the angular velocity of the body at the instant considered. We 

will denote this term as the relative velocity vB>A , since it represents the 

velocity of B with respect to A as measured by an observer fixed to the 

translating x�, y� axes. In other words, the bar appears to move as if it were 
rotating with an angular velocity V about the z� axis passing through A. 

Consequently, vB>A has a magnitude of vB>A = vrB>A and a direction which 

is perpendicular to rB>A . We therefore have

 vB = vA + vB>A  (16–15)

where

 vB = velocity of point B
 vA = velocity of the base point A

 vB>A = velocity of B with respect to A

A
B

C
vA

vB

V

As slider block A moves horizontally to the left with a velocity vA , 
it causes crank CB to rotate counterclockwise, such that vB is 
directed tangent to its circular path, i.e., upward to the left. The 
connecting rod AB is subjected to general plane motion, and at 
the instant shown it has an angular velocity V. (© R.C. Hibbeler)
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What the equation vB = vA + vB>A states is that the velocity of B,  

Fig. 16–11d, is determined by considering the entire bar to translate with a 

velocity of vA , Fig. 16–11e, and rotate about A with an angular velocity V, 

Fig. 16–11f. Vector addition of these two effects, applied to B, yields vB , as 

shown in Fig. 16–11g.

Since the relative velocity vB>A represents the effect of circular motion, 

about A, this term can be expressed by the cross product vB>A = V * rB>A , 

Eq. 16–9. Hence, for application using Cartesian vector analysis, we can 

also write Eq. 16–15 as

 vB = vA + V * rB>A  (16–16)

where

 vB = velocity of B
 vA = velocity of the base point A
 V = angular velocity of the body

 rB>A = position vector directed from A to B

The velocity equation 16–15 or 16–16 may be used in a practical 

manner to study the general plane motion of a rigid body which is either 

pin connected to or in contact with other moving bodies. When applying 

this equation, points A and B should generally be selected as points on 

the body which are pin-connected to other bodies, or as points in contact 

with adjacent bodies which have a known motion. For example, point A 

on link AB in Fig. 16–12a must move along a horizontal path, whereas 

point B moves on a circular path. The directions of vA and vB can 

therefore be established since they are always tangent to their paths of 

motion, Fig. 16–12b. In the case of the wheel in Fig. 16–13, which rolls 

without slipping, point A on the wheel can be selected at the ground. 

Here A (momentarily) has zero velocity since the ground does not 

move. Furthermore, the center of the wheel, B, moves along a horizontal 

path so that vB is horizontal.

vB/A

vA

vB

(g)

45�
C

B

BC

(a)

v
A

 

45�

B

vB 

A

(b)

vA

Fig. 16–12 

A
vA � 0

vB
B

V

Fig. 16–13 

vA

vB

B

A

Path of
point A

Path of
point B

�

General plane motion

(d)

V

B

A vA

vA

Translation

(e)

B

A

rB/A

vB/A � vrB/A

�

Rotation about the
base point A

(f)

V

Fig. 16–11 (cont.) 
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Procedure for Analysis

The relative velocity equation can be applied either by using 

Cartesian vector analysis, or by writing the x and y scalar component 

equations directly. For application, it is suggested that the following 

procedure be used.

Vector Analysis

Kinematic Diagram.
  Establish the directions of the fixed x, y coordinates and draw a 

kinematic diagram of the body. Indicate on it the velocities vA , vB 

of points A and B, the angular velocity V, and the relative-

position vector rB>A .

  If the magnitudes of vA , vB , or V are unknown, the sense of 

direction of these vectors can be assumed.

Velocity Equation.
  To apply vB = vA + V * rB>A , express the vectors in Cartesian 

vector form and substitute them into the equation. Evaluate the 

cross product and then equate the respective i and j components 

to obtain two scalar equations.

  If the solution yields a negative answer for an unknown magnitude, 

it indicates the sense of direction of the vector is opposite to that 

shown on the kinematic diagram.

Scalar Analysis

Kinematic Diagram.
  If the velocity equation is to be applied in scalar form, then the 

magnitude and direction of the relative velocity vB>A must be 

established. Draw a kinematic diagram such as shown in Fig. 16–11g, 

which shows the relative motion. Since the body is considered to be 

“pinned” momentarily at the base point A, the magnitude of vB>A 

is vB>A = vrB>A . The sense of direction of vB>A is always 

perpendicular to rB>A in accordance with the rotational motion V 

of the body.* 

Velocity Equation.
  Write Eq. 16–15 in symbolic form, vB = vA + vB>A , and 

underneath each of the terms represent the vectors graphically 

by showing their magnitudes and directions. The scalar equations 

are determined from the x and y components of these vectors. 

*The notation vB = vA + vB>A(pin) may be helpful in recalling that A is “pinned.”
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EXAMPLE   16.6

0.2 m

B

A

0.1 m C

u � 45�

vA � 2 m/s

(a)

y

x

vB

rB/A

B

A

vA � 2 m/s

(b)

V45�

 

rB/A

B

A

V
vB/A

45�

(c)

45�

Relative motion

Fig. 16–14

The link shown in Fig. 16–14a is guided by two blocks at A and B, 

which move in the fixed slots. If the velocity of A is 2 m>s downward, 

determine the velocity of B at the instant u = 45�.

SOLUTION I (VECTOR ANALYSIS)
Kinematic Diagram. Since points A and B are restricted to move along 

the fixed slots and vA is directed downward, then velocity vB must be 

directed horizontally to the right, Fig. 16–14b. This motion causes the link 

to rotate counterclockwise; that is, by the right-hand rule the angular 

velocity V is directed outward, perpendicular to the plane of motion.

Velocity Equation. Expressing each of the vectors in Fig. 16–14b in 

terms of their i, j, k components and applying Eq. 16–16 to A, the base 

point, and B, we have

  vB = vA + V * rB>A
  vBi = -2j + [vk * (0.2 sin 45�i - 0.2 cos 45�j)]

  vBi = -2j + 0.2v sin 45�j + 0.2v cos 45�i

Equating the i and j components gives

 vB = 0.2v cos 45� 0 = -2 + 0.2v sin 45�

Thus,

  v = 14.1 rad>sd   vB = 2 m>s S  Ans.

SOLUTION II (SCALAR ANALYSIS)
The kinematic diagram of the relative “circular motion” which  

produces vB>A is shown in Fig. 16–14c. Here vB>A = v(0.2 m).

Thus,

 vB = vA + vB/A

  c vB

S d = c2 m>s
T
d + cv(0.2 m)

     45�
d

( S+ )  vB = 0 + v(0.2) cos 45�

(+ c )   0 = -2 + v(0.2) sin 45�

The solution produces the above results.

It should be emphasized that these results are valid only at the 

instant u = 45�. A recalculation for u = 44� yields vB = 2.07 m>s 

and v = 14.4 rad>s; whereas when u = 46�, vB = 1.93 m>s and 

v = 13.9 rad>s, etc.

NOTE: Since vA and v are known, the velocity of any other point on the 

link can be determined. As an exercise, see if you can apply Eq. 16–16 to 

points A and C or to points B and C and show that when u = 45�, 
vC = 3.16 m>s, directed at an angle of 18.4� up from the horizontal.

a
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The cylinder shown in Fig. 16–15a rolls without slipping on the surface 

of a conveyor belt which is moving at 2 ft>s. Determine the velocity of 

point A. The cylinder has a clockwise angular velocity v = 15 rad>s at 

the instant shown.

SOLUTION I (VECTOR ANALYSIS)
Kinematic Diagram. Since no slipping occurs, point B on the cylinder 

has the same velocity as the conveyor, Fig. 16–15b. Also, the angular 

velocity of the cylinder is known, so we can apply the velocity equation 

to B, the base point, and A to determine vA .

Velocity Equation
  vA = vB + V * rA>B
  (vA)xi + (vA)y j = 2i + (-15k) * (-0.5i + 0.5j)

  (vA)xi + (vA)y j = 2i + 7.50j + 7.50i

so that

  (vA)x = 2 + 7.50 = 9.50 ft>s (1)

  (vA)y = 7.50 ft>s  (2)

Thus,

  vA = 2(9.50)2 + (7.50)2 = 12.1 ft>s Ans.

  u = tan-1 
7.50

9.50
= 38.3� a  Ans.

SOLUTION II (SCALAR ANALYSIS)
As an alternative procedure, the scalar components of vA = vB + vA>B 

can be obtained directly. From the kinematic diagram showing the 

relative “circular” motion which produces vA>B , Fig. 16–15c, we have

 vA>B = vrA>B = (15 rad>s)a 0.5 ft

cos 45�
b = 10.6 ft>s

Thus,

  vA = vB + vA>B
  c (vA)x

S d + c (vA)y

c d = c2 ft>s
S d + c10.6 ft>s

a 45�
d

Equating the x and y components gives the same results as before, 

namely,

( S+ )  (vA)x = 2 + 10.6 cos 45� = 9.50 ft>s
(+ c )  (vA)y = 0 + 10.6 sin 45� = 7.50 ft>s

EXAMPLE   16.7

O

B

A

0.5 ft

vC � 2 ft/s

v � 15 rad/s

y

x

(a)

v � 15 rad/s

(b)

B

A
rA/B

vB � 2 ft/s

vA

u

  
Relative motion

B

A

rA/B

vA/B

(c)

45�

45�
0.5 ft

v � 15 rad/s

Fig. 16–15



352  CHAPTER 16  PLANAR KINEMATICS OF A RIG ID BODY

16

 EXAMPLE   16.8

The collar C in Fig. 16–16a is moving downward with a velocity of 

2 m>s. Determine the angular velocity of CB at this instant.

SOLUTION I (VECTOR ANALYSIS)
Kinematic Diagram. The downward motion of C causes B to move 

to the right along a curved path. Also, CB and AB rotate 

counterclockwise.

Velocity Equation. Link CB (general plane motion): See Fig. 16–16b.

  vB = vC + VCB * rB>C
  vBi = -2j + vCBk * (0.2i - 0.2j)

  vBi = -2j + 0.2vCB j + 0.2vCBi

  vB = 0.2vCB  (1)

  0 = -2 + 0.2vCB (2)

  vCB = 10 rad>s d  Ans.

  vB = 2 m>s S

SOLUTION II (SCALAR ANALYSIS)
The scalar component equations of vB = vC + vB>C can be obtained 

directly. The kinematic diagram in Fig. 16–16c shows the relative 

“circular” motion which produces vB>C . We have

  vB = vC + vB>C
  c vB

S d = c2 m>s 

T
d + cvCB10.222 m2

a45�
d

Resolving these vectors in the x and y directions yields

( S+ )  vB = 0 + vCB10.222 cos 45�2
(+ c ) 0 = -2 + vCB10.222 sin 45�2
which is the same as Eqs. 1 and 2.

NOTE: Since link AB rotates about a fixed axis and vB is known,  

Fig. 16–16d, its angular velocity is found from vB = vABrAB or 

2 m>s = vAB (0.2 m), vAB = 10 rad>s.

vC � 2 m/s

(a)

C
A

B

0.2 m

0.2 m

y

x

vB

rB/CvC � 2 m/s

B

C

VCB

(b)

B

A

(d)

0.2 m

VAB

vB � 2 m/s

vB/ArB/C
45�

B

VCB

(c)

45�

C

Relative motion

Fig. 16–16
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P16–1. Set up the relative velocity equation between 

points A and B.

3 m

2 m

A

60�

B

6 rad/s

(a)

30�
A

B

4 rad/s

No slipping

0.5 m

(b)

A

30�

45�

B2 rad/s

3 m

4 m

(c)

3 rad/s

A B

3 m

2 m

(d)

30�

A

B
v

3 m
0.5 m

4 rad/s

No slipping

(e)

A

B

4 m

4 m

1 m
6 rad/s

PRELIMINARY PROBLEM

(f)

Prob. P16–1
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FUNDAMENTAL PROBLEMS

F16–7.  If roller A moves to the right with a constant 

velocity of vA = 3 m>s, determine the angular velocity of 

the link and the velocity of roller B at the instant u = 30�. 

A

B

1.5 m

vA � 3 m/s

u � 30�

Prob. F16–7

F16–8.  The wheel rolls without slipping with an angular 

velocity of v = 10 rad>s. Determine the magnitude of the 

velocity of point B at the instant shown. 

A

B

0.6 m

v

Prob. F16–8

F16–9.  Determine the angular velocity of the spool. The 

cable wraps around the inner core, and the spool does not 

slip on the platform P. 

1 ft

2 ft

A P

B
 4 ft/s

 2 ft/s

O

Prob. F16–9

F16–10.  If crank OA rotates with an angular velocity of 

v = 12 rad>s, determine the velocity of piston B and the 

angular velocity of rod AB at the instant shown. 

0.3 m

0.6 m

O
B

A

12 rad/s

30�

Prob. F16–10

F16–11.  If rod AB slides along the horizontal slot with a 

velocity of 60 ft>s, determine the angular velocity of link 

BC at the instant shown. 

B A

O

C

0.5 ft

2.5 ft

60 ft/s

30�

Prob. F16–11

F16–12.  End A of the link has a velocity of vA = 3 m>s. 

Determine the velocity of the peg at B at this instant. The 

peg is constrained to move along the slot. 

A

vA � 3 m/s

2 m

B

30�

45�

Prob. F16–12
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16–59. The link AB has an angular velocity of 3 rad>s. 
Determine the velocity of block C and the angular velocity 

of link BC at the instant u = 45�. Also, sketch the position 

of link BC when u = 60�, 45�, and 30° to show its general 

plane motion.

1.5 m

0.5 m

vAB � 3 rad/s

 � 45�u

A

B C

Prob. 16–59

*16–60. The slider block C moves at 8 m>s down the 

inclined groove. Determine the angular velocities of links 

AB and BC, at the instant shown.

2 m

2 m

A

C

B

45�

vC � 8 m/s

Prob. 16–60

16–57. At the instant shown the boomerang has an angular 

velocity v = 4 rad>s, and its mass center G has a velocity  

vG = 6 in.>s. Determine the velocity of point B at this instant.

5 in.

45�

30�

1.5 in.

G B

A

 � 4 rad/s

vG � 6 in./s

v

Prob. 16–57

16–58. If the block at C is moving downward at 4 ft>s, 
determine the angular velocity of bar AB at the instant shown.

A

B

C

2 ft

3 ft vC � 4 ft/s

30�

vAB

Prob. 16–58

PROBLEMS
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16–61. Determine the angular velocity of links AB  

and BC at the instant u = 30°. Also, sketch the position of 

link BC when u = 55°, 45°, and 30° to show its general 

plane motion.

A

B

C

1 ft

3 ft

vC � 6 ft/s 

u

Prob. 16–61

16–62. The planetary gear A is pinned at B. Link BC 

rotates clockwise with an angular velocity of 8 rad>s, while 

the outer gear rack rotates counterclockwise with an 

angular velocity of 2 rad>s. Determine the angular velocity 

of gear A.

15 in.

C

BC � 8 rad/s

20 in.

D

A
B

 � 2 rad/sv

v

Prob. 16–62

16–63. If the angular velocity of link AB is vAB = 3 rad>s, 

determine the velocity of the block at C and the angular 

velocity of the connecting link CB at the instant u = 45� 
and f = 30�.

3 ft

2 ft

u � 45�

f � 30�

C

B

A

vAB � 3 rad/s

Prob. 16–63

*16–64. The pinion gear A rolls on the fixed gear rack B 

with an angular velocity v = 4 rad>s. Determine the 

velocity of the gear rack C.

16–65. The pinion gear rolls on the gear racks. If B is 

moving to the right at 8 ft>s and C is moving to the left at  

4 ft>s, determine the angular velocity of the pinion gear and 

the velocity of its center A.

C

B

0.3 ft
A

v

Probs. 16–64/65
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16–66. Determine the angular velocity of the gear and the 

velocity of its center O at the instant shown.

3 ft/s

4 ft/s

A

O
45�

1.50 ft

0.75 ft

Prob. 16–66

16–67. Determine the velocity of point A  on the rim of the 

gear at the instant shown.

3 ft/s

4 ft/s

A

O
45�

1.50 ft

0.75 ft

Prob. 16–67

*16–68. Knowing that angular velocity of link AB is  

vAB = 4 rad>s, determine the velocity of the collar at C and 

the angular velocity of link CB at the instant shown. Link 

CB is horizontal at this instant.

500 mm

60�

45�

A

C B
350 mm

vAB � 4 rad/s

Prob. 16–68

16–69. Rod AB is rotating with an angular velocity of  

vAB = 60 rad>s. Determine the velocity of the slider C at 

the instant u = 60° and f = 45°. Also, sketch the position 

of  bar BC when u = 30°, 60° and 90° to show its general 

plane motion.

C

   vAB � 60 rad/s
A

300 mm

600 mm
B

f

u

Prob. 16–69

16–70. The angular velocity of link AB is vAB = 5 rad>s. 
Determine the velocity of block C and the angular velocity 

of link BC at the instant u = 45° and f = 30°. Also, sketch 

the position of link CB when u = 45°, 60°, and 75° to show 

its general plane motion.

f

A

B

2 m

3 m

C

vAB  � 5 rad/s

u

Prob. 16–70
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16–71. The similar links AB and CD rotate about the 

fixed  pins at A and C. If AB has an angular velocity  

vAB = 8 rad>s, determine the angular velocity of BDP and 

the velocity of point P.

300 mm

B

A

D

C

P

700 mm

300 mm

300 mm300 mm

60� 60�

vAB � 8 rad/s

Prob. 16–71

*16–72. If the slider block A is moving downward at  

vA = 4 m>s, determine the velocities of blocks B and C at 

the instant shown.

16–73. If the slider block A is moving downward at vA = 

4 m>s, determine the velocity of point E at the instant shown.

4

5
3250 mm

400 mm
300 mm

300 mm
E

B

C

D

A
30�

vA � 4 m/s

Probs. 16–72/73

16–74. The epicyclic gear train consists of the sun gear A 

which is in mesh with the planet gear B. This gear has an 

inner hub C which is fixed to B and in mesh with the fixed 

ring gear R. If the connecting link DE pinned to B and C is 

rotating at vDE = 18 rad>s about the pin at E, determine 

the angular velocities of the planet and sun gears.

BA

200 mm

100 mm

DE � 18 rad/s

R

v

C

300 mm

E

600 mm

D

Prob. 16–74

16–75. If link AB is rotating at vAB = 3 rad>s, determine 

the angular velocity of link CD at the instant shown.

*16–76. If link CD is rotating at vCD = 5 rad>s, determine 

the angular velocity of link AB at the instant shown.

A
B

8 in.

30�

45�

4 in.

D

C

vCD

6 in.

vAB

Probs. 16–75/76
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16–77. The planetary gear system is used in an automatic 

transmission for an automobile. By locking or releasing 

certain gears, it has the advantage of operating the car at 

different speeds. Consider the case where the ring gear R is 

held fixed, vR = 0, and the sun gear S is rotating at 

vS = 5 rad>s. Determine the angular velocity of each of the 

planet gears P and shaft A.

R

S

P

A

vS

vR

80 mm

40 mm

40 mm

Prob. 16–77

16–78. If the ring gear A rotates clockwise with an angular 

velocity of vA = 30 rad>s, while link BC rotates clockwise 

with an angular velocity of vBC = 15 rad>s, determine the 

angular velocity of gear D.

250 mm

C

vBC � 15 rad/s

300 mm

D

A

B

   � 30 rad/svA    

Prob. 16–78

16–79. The mechanism shown is used in a riveting 

machine. It consists of a driving piston A, three links, and a 

riveter which is attached to the slider block D. Determine 

the velocity of D at the instant shown, when the piston at A 

is traveling at vA = 20 m>s.

150 mm 300 mm

v  � 20 m/s

200 mm

A

A

C

D

B

45�

45�

60�
30�

45�

Prob. 16–79

*16–80. The mechanism is used on a machine for the 

manufacturing of a wire product. Because of the rotational 

motion of link AB and the, sliding of block F, the segmental 

gear lever DE undergoes general plane motion. If AB is 

rotating at vAB = 5 rad>s, determine the velocity of point E 

at the instant shown.

C

A

45�45�
B

50 mm
200 mm

20 mm

20 mm

50 mm
45�

E

F

D

vAB � 5 rad/s

Prob. 16–80
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16.6  Instantaneous Center of Zero 
Velocity

The velocity of any point B located on a rigid body can be obtained in a 

very direct way by choosing the base point A to be a point that has zero 
velocity at the instant considered. In this case, vA = 0, and therefore the 

velocity equation, vB = vA + V * rB>A , becomes vB = V * rB>A . For a 

body having general plane motion, point A so chosen is called the 

instantaneous center of zero velocity (IC), and it lies on the instantaneous 
axis of zero velocity. This axis is always perpendicular to the plane of 

motion, and the intersection of the axis with this plane defines the location 

of the IC. Since point A coincides with the IC, then vB = V * rB>IC and 

so point B moves momentarily about the IC in a circular path; in other 

words, the body appears to rotate about the instantaneous axis. The 

magnitude of vB is simply vB = vrB>IC , where v is the angular velocity of 

the body. Due to the circular motion, the direction of vB must always be 

perpendicular to rB>IC .

For example, the IC for the bicycle wheel in Fig. 16–17 is at the contact 

point with the ground. There the spokes are somewhat visible, whereas at 

the top of the wheel they become blurred. If one imagines that the wheel 

is momentarily pinned at this point, the velocities of various points can 

be found using v = vr. Here the radial distances shown in the photo,  

Fig. 16–17, must be determined from the geometry of the wheel.

IC

Fig. 16–17 
(© R.C. Hibbeler)
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Location of the IC. To locate the IC we can use the fact that the 

velocity of a point on the body is always perpendicular to the relative-
position vector directed from the IC to the point. Several possibilities 

exist:

The velocity vA of a point A on the body and the angular velocity V 

of the body are known, Fig. 16–18a. In this case, the IC is located 

along the line drawn perpendicular to vA at A, such that the distance 

from A to the IC is rA>IC = vA>v. Note that the IC lies up and to the 

right of A since vA must cause a clockwise angular velocity V about 

the IC.

The lines of action of two nonparallel velocities vA and vB are known, 

Fig. 16–18b. Construct at points A and B line segments that are 

perpendicular to vA and vB . Extending these perpendiculars to 

their point of intersection as shown locates the IC at the instant 

considered.

The magnitude and direction of two parallel velocities vA and vB are 
known. Here the location of the IC is determined by proportional 

triangles. Examples are shown in Fig. 16–18c and d. In both cases 

rA>IC = vA>v and rB>IC = vB>v. If d is a known distance between 

points A and B, then in Fig. 16–18c, rA>IC + rB>IC = d and in   

Fig. 16–18d, rB>IC - rA>IC = d.

vA

rA/IC

A

IC
vIC � 0

(a)

Location of IC
knowing vA and V

Centrode

V

B

A
rA/IC

rB/IC

vB

vA
IC

vIC � 0

(b)

V

Location of IC
knowing the directions

of vA and vB

Fig. 16–18 

B

A

d
IC

rA/IC

rB/IC

vB

vA

(c)

V

Location of IC
knowing vA and vB

rA/IC

B

A
vA

vB

IC

d 

rB/IC

(d)

V
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Realize that the point chosen as the instantaneous center of zero 

velocity for the body can only be used at the instant considered since the 

body changes its position from one instant to the next. The locus of points 

which define the location of the IC during the body’s motion is called a 

centrode, Fig. 16–18a, and so each point on the centrode acts as the IC for 

the body only for an instant.

Although the IC may be conveniently used to determine the velocity of 

any point in a body, it generally does not have zero acceleration and therefore 

it should not be used for finding the accelerations of points in a body.

vB

IC
B

A

vA

As the board slides downward to the left it is 
subjected to general plane motion. Since the 
directions of the velocities of its ends A and 
B are known, the IC is located as shown. At 
this instant the board will momentarily rotate 
about this point. Draw the board in several 
other positions and establish the IC for 
each case. (© R.C. Hibbeler)

Procedure for Analysis

The velocity of a point on a body which is subjected to general plane 

motion can be determined with reference to its instantaneous center 

of zero velocity provided the location of the IC is first established 

using one of the three methods described above.

  As shown on the kinematic diagram in Fig. 16–19, the body is 

imagined as “extended and pinned” at the IC so that, at the instant 

considered, it rotates about this pin with its angular velocity V.

  The magnitude of velocity for each of the arbitrary points A, B, 

and C on the body can be determined by using the equation 

v = vr, where r is the radial distance from the IC to each point.

  The line of action of each velocity vector v is perpendicular to its 

associated radial line r, and the velocity has a sense of direction 

which tends to move the point in a manner consistent with the 

angular rotation V of the radial line, Fig. 16–19. 

rA/IC

rB/IC
rC/IC

vB � v rB/IC

vC � v rC/IC

vA � v rA/IC
A

B

C

IC

V

Fig. 16–19 
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EXAMPLE   16.9

(a)

B

A
C

u

v

D
b

C

A B

VDC

(c)

Show how to determine the location of the instantaneous center of zero 

velocity for (a) member BC shown in Fig. 16–20a; and (b) the link CB 

shown in Fig. 16–20c.

vB

rB/IC VBC

vC

rC/IC

IC

C

B

(b)

u

SOLUTION
Part (a). As shown in Fig. 16–20a, point B moves in a circular path 

such that vB is perpendicular to AB. Therefore, it acts at an angle u 

from the horizontal as shown in Fig. 16–20b. The motion of point B 

causes the piston to move forward horizontally with a velocity vC . 

When lines are drawn perpendicular to vB and vC , Fig. 16–20b, they 

intersect at the IC.

Part (b). Points B and C follow circular paths of motion since 

links  AB and DC are each subjected to rotation about a fixed axis, 

Fig.  16–20c. Since the velocity is always tangent to the path, at the 

instant considered, vC on rod DC and vB on rod AB are both directed 

vertically downward, along the axis of link CB, Fig. 16–20d. Radial 

lines  drawn perpendicular to these two velocities form parallel lines 

which intersect at “infinity;” i.e., rC>IC S �  and rB>IC S � . Thus, 

vCB = (vC>rC>IC) S 0. As a result, link CB momentarily translates. An 

instant later, however, CB will move to a tilted position, causing the IC 

to move to some finite location.

VCB

C

vC

rB/IC

vB

B

IC

rC/IC

(d)

Fig. 16–20
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EXAMPLE   16.10

0.4 m

IC

B

D

rD/IC

(b)

rB/IC

vD � 3 m/s

vB

BD

45�

V

A

B

0.4 m

(c)

vB � 2.12 m/s

ABV

45�

Fig. 16–21

Block D shown in Fig. 16–21a moves with a speed of 3 m>s. Determine the 

angular velocities of links BD and AB, at the instant shown.

(a)

A

B

D

0.4 m 0.4 m

90�

45�45� 3 m/s

SOLUTION
As D moves to the right, it causes AB to rotate clockwise about point A. 

Hence, vB is directed perpendicular to AB. The instantaneous center of zero 

velocity for BD is located at the intersection of the line segments drawn 

perpendicular to vB and vD , Fig. 16–21b. From the geometry,

  rB>IC = 0.4 tan 45� m = 0.4 m

  rD>IC =
0.4 m

cos 45�
= 0.5657 m

Since the magnitude of vD is known, the angular velocity of link BD is

 vBD =
vD

rD>IC =
3 m>s

0.5657 m
= 5.30 rad>sd Ans.

The velocity of B is therefore

 vB = vBD(rB>IC) = 5.30 rad>s (0.4 m) = 2.12 m>s c45�

From Fig. 16–21c, the angular velocity of AB is

 vAB =
vB

rB>A =
2.12 m>s

0.4 m
= 5.30 rad>sb Ans.

NOTE: Try to solve this problem by applying vD = vB + vD>B to 

member BD.
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EXAMPLE   16.11

The cylinder shown in Fig. 16–22a rolls without slipping between the 

two moving plates E and D. Determine the angular velocity of the 

cylinder and the velocity of its center C.

vD = 0.4 m/s

C

B

AE

D

0.125 m

vE = 0.25 m/s

(a)

SOLUTION
Since no slipping occurs, the contact points A and B on the cylinder 

have the same velocities as the plates E and D, respectively. 

Furthermore, the velocities vA and vB are parallel, so that by the 

proportionality of right triangles the IC is located at a point on line AB, 

Fig. 16–22b. Assuming this point to be a distance x from B, we have

 vB = vx;  0.4 m>s = vx

 vA = v(0.25 m - x);  0.25 m>s = v(0.25 m - x)

Dividing one equation into the other eliminates v and yields

 0.4(0.25 - x) = 0.25x

 x =
0.1

0.65
= 0.1538 m

Hence, the angular velocity of the cylinder is

 v =
vB

x
=

0.4 m>s
0.1538 m

= 2.60 rad>sb Ans.

The velocity of point C is therefore

  vC = vrC>IC = 2.60 rad>s (0.1538 m - 0.125 m)

  = 0.0750 m>s d  Ans.

C

B

A vA � 0.25 m/s

vB � 0.4 m/s

0.25 m
x

0.125 m

IC
rC/IC

(b)

V

rC

Fig. 16–22
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The crankshaft AB turns with a clockwise angular velocity of 10 rad>s, 

Fig. 16–23a. Determine the velocity of the piston at the instant shown.

(a)

B

A

C

0.75 ft

0.25 ft

13.6�

45�

AB � 10 rad/s

BC � 2.43 rad/sv

v

SOLUTION
The crankshaft rotates about a fixed axis, and so the velocity of 

point B is

 vB = 10 rad>s (0.25 ft) = 2.50 ft>s  a45�

Since the directions of the velocities of B and C are known, then the 

location of the IC for the connecting rod BC is at the intersection of 

the lines extended from these points, perpendicular to vB and vC,  

Fig. 16–23b. The magnitudes of rB>IC and rC>IC can be obtained from the 

geometry of the triangle and the law of sines, i.e.,

  
0.75 ft

sin 45�
=

rB>IC
sin 76.4�

  rB>IC = 1.031 ft

  
0.75 ft

sin 45�
=

rC>IC
sin 58.6�

  rC>IC = 0.9056 ft

The rotational sense of VBC must be the same as the rotation caused 

by vB about the IC, which is counterclockwise. Therefore,

 vBC =
vB

rB>IC =
2.5 ft>s
1.031 ft

= 2.425 rad>s
Using this result, the velocity of the piston is

 vC = vBCrC>IC = (2.425 rad>s)(0.9056 ft) = 2.20 ft>s Ans.

EXAMPLE   16.12

0.75 ft

2.50 ft/s

IC
C

B

(b)

vC

58.6�

45.0� 76.4�

Fig. 16–23
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P16–2. Establish the location of the instantaneous center 

of zero velocity for finding the velocity of point B.

B

2 m

45�

8 rad/s

No slipping

(a)

0.5 m

A

B

2 m

4 rad/s 3
4

5

(b)

0.5 m

A

B

4 rad/s

0.3 m

1.5 m

30�

(c)

C

B

1 m

1 m

A

3 m/s

4 m/s

(d)

0.5 m

3 rad/s

No slipping

A

0.5 m

B2 m

(e)

No slipping

45�
2 m

B
30�

0.5 m

6 rad/s

(f)

A

PRELIMINARY PROBLEM

Prob. P16–2
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F16–16.  If cable AB is unwound with a speed of 3 m>s, and 

the gear rack C has a speed of 1.5 m>s, determine the 

angular velocity of the gear and the velocity of its center O. 

F16–13.  Determine the angular velocity of the rod and the 

velocity of point C at the instant shown. 

FUNDAMENTAL PROBLEMS

A

C

2.5 m

2.5 m

4 m

B

vA � 6 m/s

Prob. F16–13

F16–14.  Determine the angular velocity of link BC and 

velocity of the piston C at the instant shown. 

B

C

 3 m/s

 1.5 m/s

0.3 m
0.2 m

O

A

Prob. F16–16

F16–17.  Determine the angular velocity of link BC and the 

velocity of the piston C at the instant shown. 

A
0.2 m

0.8 m

C

B 30�

v � 6 rad/s

Prob. F16–17

F16–18.  Determine the angular velocity of links BC and 

CD at the instant shown. 

A

B C

D

0.4 m
0.2 m

0.2 m

vAB � 10 rad/s
30�

Prob. F16–18

A
B C

0.6 m 1.2 m

vAB � 12 rad/s

Prob. F16–14

F16–15.  If the center O of the wheel is moving with a 

speed of vO = 6 m>s, determine the velocity of point A on 

the wheel. The gear rack B is fixed. 

A

B

 6 m/s

0.6 m 0.3 m

O

Prob. F16–15
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16–83. The shaper mechanism is designed to give a slow 

cutting stroke and a quick return to a blade attached to the 

slider at C. Determine the angular velocity of the link CB at 

the instant shown, if the link AB is rotating at 4 rad>s.

C

   AB � 4 rad/sv

A

60�

300 mm

45�

125 mm

B

Prob. 16–83

*16–84. The conveyor belt is moving to the right at  

v = 8 ft>s, and at the same instant the cylinder is rolling 

counterclockwise at v = 2 rad>s without slipping. Determine 

the velocities of the cylinder’s center C and point B at this 

instant.

16–85. The conveyor belt is moving to the right at  

v = 12 ft>s, and at the same instant the cylinder is rolling 

counterclockwise at v = 6 rad>s while its center has a 

velocity of 4 ft>s to the left. Determine the velocities of 

points A and B on the disk at this instant. Does the 

cylinder slip on the conveyor?

v

v1 ft
C

B

A

Probs. 16–84/85

16–81. In each case show graphically how to locate the 

instantaneous center of zero velocity of link AB. Assume 

the geometry is known.

A A

A

B

B
B

C

(a)

(c)

(b)

v

v
v

Prob. 16–81

16–82. Determine the angular velocity of link AB at the 

instant shown if block C is moving upward at 12 in>s.

A

B

5 in. 45�

30�

4 in.

C

AB

Prob. 16–82

PROBLEMS
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16–86. As the cord unravels from the wheel’s inner hub, 

the wheel is rotating at v = 2 rad>s at the instant shown. 

Determine the velocities of points A and B.

5 in.

2 in.

A

B

 � 2 rad/s

O

v

Prob. 16–86

16–87. If rod CD is rotating with an angular velocity  

vCD = 4 rad>s, determine the angular velocities of rods AB 

and CB at the instant shown.

B

30�

C

D

A

vCD

0.4 m
1 m

0.5 m

� 4 rad/s

Prob. 16–87

*16–88. If bar AB has an angular velocity vAB = 6 rad>s, 
determine the velocity of the slider block C at the instant 

shown.

30�

500 mm200 mm

 � 45�A

B

C

u

vAB � 6 rad/s

Prob. 16–88

16–89. Show that if the rim of the wheel and its hub 

maintain contact with the three tracks as the wheel rolls, it is 

necessary that slipping occurs at the hub A if no slipping 

occurs at B. Under these conditions, what is the speed at A 

if the wheel has angular velocity V?

B

A

v

r2

r1

Prob. 16–89
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16–90. Due to slipping, points A and B on the rim of the 

disk have the velocities shown. Determine the velocities of 

the center point C and point D at this instant.

16–91. Due to slipping, points A and B on the rim of the 

disk have the velocities shown. Determine the velocities of 

the center point C and point E at this instant.

C

A

B

F

D

E

vB � 10 ft/s

vA � 5 ft/s

0.8 ft

30�

45�

Probs. 16–90/91

*16–92. Member AB is rotating at vAB = 6 rad>s. 

Determine the velocity of point D and the angular velocity 

of members BPD and CD.

16–93. Member AB is rotating at vAB = 6 rad>s. 

Determine the velocity of point P, and the angular velocity 

of member BPD.

200 mm

B

A

D

C

P

250 mm

200 mm

200 mm200 mm

vAB� 6 rad/s

60� 60�

Probs. 16–92/93

16–94. The cylinder B rolls on the fixed cylinder A without 

slipping. If connected bar CD is rotating with an angular 

velocity vCD = 5 rad>s, determine the angular velocity of 

cylinder B. Point C is a fixed point.

B

C A

D
0.1 m

0.3 m

vCD � 5 rad/s

Prob. 16–94

16–95. As the car travels forward at 80 ft>s on a wet road, 

due to slipping, the rear wheels have an angular velocity 

v = 100 rad>s. Determine the speeds of points A, B, and C 

caused by the motion.

80 ft/s

100 rad/s1.4 ft A

C

B

Prob. 16–95

*16–96. The pinion gear A rolls on the fixed gear rack B 

with an angular velocity v = 8 rad>s. Determine the 

velocity of the gear rack C.

150 mm

A

B

C

v

Prob. 16–96
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16–97. If the hub gear H and ring gear R have angular 

velocities vH = 5 rad>s and vR = 20 rad>s, respectively, 

determine the angular velocity vS of the spur gear S and the 

angular velocity of its attached arm OA.

16–98. If the hub gear H has an angular velocity  

vH = 5 rad>s, determine the angular velocity of the ring 

gear R so that the arm OA attached to the spur gear S 

remains stationary (vOA = 0). What is the angular velocity 

of the spur gear?

H

S

R

O
150 mm

50 mm
A

SH

R

250 mm

O

v

v

v

Probs. 16–97/98

16–99. The crankshaft AB rotates at vAB = 50 rad>s 

about the fixed axis through point A, and the disk at C is 

held fixed in its support at E. Determine the angular 

velocity of rod CD at the instant shown.

E

C

D
F

AB

75 mm

40 mm
75 mm

vAB � 50 rad/s

100 mm

60�

300 mm

Prob. 16–99

*16–100. Cylinder A rolls on the fixed cylinder B without 

slipping. If bar CD is rotating with an angular velocity of  

vCD = 3 rad>s, determine the angular velocity of A.

C

D

B

A
200 mm

200 mm

vCD

Prob. 16–100

16–101. The planet gear A is pin connected to the end of 

the link BC. If the link rotates about the fixed point B at  

4 rad>s, determine the angular velocity of the ring gear R. 

The sun gear D is fixed from rotating.

16–102. Solve Prob. 16–101 if the sun gear D is rotating 

clockwise at vD = 5 rad>s while link BC rotates 

counterclockwise at vBC = 4 rad>s.

R

D

B C
A

150 mm
75 mm

vR

vBC � 4 rad/s

Probs. 16–101/102
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16.7  Relative-Motion Analysis: 
Acceleration

An equation that relates the accelerations of two points on a bar (rigid 

body) subjected to general plane motion may be determined by 

differentiating vB = vA + vB>A with respect to time. This yields

dvB

dt
=

dvA

dt
+

dvB>A
dt

The terms dvB>dt = aB and dvA>dt = aA are measured with respect to 

a set of fixed x, y axes and represent the absolute accelerations of points B 

and A. The last term represents the acceleration of B with respect to A as 

measured by an observer fixed to translating x�, y� axes which have their 

origin at the base point A. In Sec. 16.5 it was shown that to this observer 

point B appears to move along a circular arc that has a radius of 

curvature rB>A . Consequently, aB>A can be expressed in terms of its 

tangential and normal components; i.e., aB>A = (aB>A)t + (aB>A)n , where 

(aB>A)t = arB>A and (aB>A)n = v2rB>A . Hence, the relative-acceleration 

equation can be written in the form

 aB = aA + (aB>A)t + (aB>A)n  (16–17)

where

 aB = acceleration of point B

 aA = acceleration of point A

 (aB>A)t =  tangential acceleration component of B with respect 

to A. The magnitude is (aB>A)t = arB>A , and the 

direction is perpendicular to rB>A .

 (aB>A)n =  normal acceleration component of B with respect 

to A. The magnitude is (aB>A)n = v2rB>A , and the 

direction is always from B toward A .

The terms in Eq. 16–17 are represented graphically in Fig. 16–24. Here 

it is seen that at a given instant the acceleration of B, Fig. 16–24a, is 

determined by considering the bar to translate with an acceleration aA , 

Fig. 16–24b, and simultaneously rotate about the base point A with an 

instantaneous angular velocity V and angular acceleration A, Fig. 16–24c. 

Vector addition of these two effects, applied to B, yields aB , as shown in 

Fig. 16–24d. It should be noted from Fig. 16–24a that since points A and B 

move along curved paths, the accelerations of these points will have both 
tangential and normal components. (Recall that the acceleration of a 

point is tangent to the path only when the path is rectilinear or when it is 

an inflection point on a curve.)

Path of
point A

Path of
point B

B

A

aB

aA

General plane motion

(a)

V A

A

aA

B

aA

Translation

(b)

�

�

B

A

aB/A

(aB/A)t

(aB/A)n

rB/A

Rotation about the
base point A

(c)

V
A

(d)

(aB/A)n

(aB/A)t

aA

aB

Fig. 16–24 
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Since the relative-acceleration components represent the effect of 

circular motion observed from translating axes having their origin at the 

base point A, these terms can be expressed as (aB>A)t = A * rB>A and 

(aB>A)n = -v2rB>A , Eq. 16–14. Hence, Eq. 16–17 becomes

 aB = aA + A * rB>A - v2rB>A  (16–18)

where

 aB = acceleration of point B 

 aA = acceleration of the base point A 

 A = angular acceleration of the body 

 V = angular velocity of the body 

 rB>A = position vector directed from A to B

If Eq. 16–17 or 16–18 is applied in a practical manner to study the 

accelerated motion of a rigid body which is pin connected to two other 

bodies, it should be realized that points which are coincident at the pin 

move with the same acceleration, since the path of motion over which 

they travel is the same. For example, point B lying on either rod BA or 

BC of the crank mechanism shown in Fig. 16–25a has the same 

acceleration, since the rods are pin connected at B. Here the motion of B 

is along a circular path, so that aB can be expressed in terms of its 

tangential and normal components. At the other end of rod BC point C 

moves along a straight-lined path, which is defined by the piston. Hence, 

aC is horizontal, Fig. 16–25b.

Finally, consider a disk that rolls without slipping as shown in Fig. 16–26a. 

As a result, vA = 0 and so from the kinematic diagram in Fig. 16–26b, the 

velocity of the mass center G is 

vG = vA + V * rG>A = 0 + (-vk) * (rj)

So that

 vG = vr (16–19)

This same result can also be determined using the IC method where 

point A is the IC.

Since G moves along a straight line, its acceleration in this case can be 

determined from the time derivative of its velocity.

dvG

dt
=

dv

dt
 r 

 aG = ar (16–20)

These two important results were also obtained in Example 16–4. They 

apply as well to any circular object, such as a ball, gear, wheel, etc., that 

rolls without slipping.

(a)

A

B

C

Path of B

v
a

A

B

C
aB aC

(b)

B

(aB)n
(aB)t

aB

Fig. 16–25 

r

A

G

(a)

V
A

 

rG/A

G

(b)

vG

A

V

Fig. 16–26 
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Procedure for Analysis

The relative acceleration equation can be applied between any two 

points A and B on a body either by using a Cartesian vector analysis, 

or by writing the x and y scalar component equations directly.

Velocity Analysis.
  Determine the angular velocity V of the body by using a velocity 

analysis as discussed in Sec. 16.5 or 16.6. Also, determine the 

velocities vA and vB of points A and B if these points move along 
curved paths.

Vector Analysis
Kinematic Diagram.

  Establish the directions of the fixed x, y coordinates and draw the 

kinematic diagram of the body. Indicate on it aA , aB , V, A, and rB>A .

  If points A and B move along curved paths, then their accelerations 

should be indicated in terms of their tangential and normal 

components, i.e., aA = (aA)t + (aA)n and aB = (aB)t + (aB)n .

Acceleration Equation.

  To apply aB = aA + A * rB>A - v2rB>A, express the vectors in 

Cartesian vector form and substitute them into the equation. 

Evaluate the cross product and then equate the respective i and j 
components to obtain two scalar equations.

  If the solution yields a negative answer for an unknown magnitude, 

it indicates that the sense of direction of the vector is opposite to 

that shown on the kinematic diagram.

Scalar Analysis
Kinematic Diagram.

  If the acceleration equation is applied in scalar form, then the 

magnitudes and directions of the relative-acceleration components 

(aB>A)t and (aB>A)n must be established. To do this draw a kinematic 

diagram such as shown in Fig. 16–24c. Since the body is considered 

to be momentarily “pinned” at the base point A, the magnitudes 

of these components are (aB>A)t = arB>A and (aB>A)n = v2rB>A . 

Their sense of direction is established from the diagram such that 

(aB>A)t acts perpendicular to rB>A , in accordance with the rotational 

motion A of the body, and (aB>A)n is directed from B toward A.* 

Acceleration Equation.
  Represent the vectors in aB = aA + (aB>A)t + (aB>A)n graphically 

by showing their magnitudes and directions underneath each 

term. The scalar equations are determined from the x and y 

components of these vectors.

*The notation aB = aA + (aB>A(pin))t + (aB>A(pin))n may be helpful in recalling that A 

is assumed to be pinned.

A

C

B

(aA)n

(aA)t

aB

V, A

The mechanism for a window is shown. Here 
CA rotates about a fixed axis through C, and 
AB undergoes general plane motion. Since 
point A moves along a curved path it has two 
components of acceleration, whereas point B 
moves along a straight track and the direction 
of its acceleration is specified. (© R.C. Hibbeler)
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The rod AB shown in Fig. 16–27a is confined to move along 

the inclined planes at A and B. If point A has an acceleration 

of 3 m>s2 and a velocity of 2 m>s, both directed down the 

plane at the instant the rod is horizontal, determine the 

angular acceleration of the rod at this instant.

SOLUTION I (VECTOR ANALYSIS)
We will apply the acceleration equation to points A and B on 

the rod. To do so it is first necessary to determine the angular 

velocity of the rod. Show that it is v = 0.283 rad>sd using 

either the velocity equation or the method of instantaneous 

centers.

Kinematic Diagram. Since points A and B both move 

along straight-line paths, they have no components of 

acceleration normal to the paths. There are two unknowns in 

Fig. 16–27b, namely, aB and a.

Acceleration Equation.

 aB = aA + A * rB>A - v2rB>A

EXAMPLE   16.13

10 m

BA

(a)

vA � 2 m/s
aA � 3 m/s2

45� 45�

x

y

A B

45�

45�

aA � 3 m/s2

rB/A

v � 0.283 rad/s

aB

(b)

A

aB cos 45�i + aB sin 45�j = 3 cos 45�i - 3 sin 45�j + (ak) * (10i) - (0.283)2(10i)

Carrying out the cross product and equating the i and j components 

yields

  aB cos 45� = 3 cos 45� - (0.283)2(10) (1)

  aB sin 45� = -3 sin 45� + a(10)  (2)

Solving, we have

 aB = 1.87 m>s2a45�

  a = 0.344 rad>s2 d Ans.

SOLUTION II (SCALAR ANALYSIS)
From the kinematic diagram, showing the relative-acceleration 

components (aB>A)t and (aB>A)n , Fig. 16–27c, we have

 aB = aA + (aB>A)t + (aB>A)n

c aB

a45�
d =  c3 m>s2

c45�
d + ca(10 m)

c d + c (0.283 rad>s)2(10 m)

d d
Equating the x and y components yields Eqs. 1 and 2, and the solution 

proceeds as before.

A B

10 m

rB/A

(aB/A)t � a rB/A

(aB/A)n � v2 rB/A

v � 0.283 rad/s

(c)

A

Fig. 16–27 
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G

(c)

A

rA/G(aA/G)y

(aA/G)x

v � 6 rad/s
 a � 4 rad/s2

Fig. 16–28

EXAMPLE   16.14

The disk rolls without slipping and has the angular motion shown in 

Fig. 16–28a. Determine the acceleration of point A at this instant.

SOLUTION I (VECTOR ANALYSIS)
Kinematic Diagram. Since no slipping occurs, applying Eq. 16–20,

aG = ar = (4 rad>s2)(0.5 ft) = 2 ft>s2

Acceleration Equation.
We will apply the acceleration equation to points G and A, Fig. 16–28b,

  aA = aG + A : rA>G - v2rA>G
 aA = -2i + (4k) : (-0.5j) - (6)2(-0.5j)

 = {18j} ft>s2

SOLUTION II (SCALAR ANALYSIS)
Using the result for aG = 2 ft>s2 determined above, and from the 

kinematic diagram, showing the relative motion aA>G, Fig. 16–28c, 

we have

 aA = aG + (aA>G)x + (aA>G)y

c (aA)x

S d + c (aA)y

c d = c2 ft>s2

d d + c (4 rad>s2)(0.5 ft)

S d + c (6 rad>s)2(0.5 ft)

c d
S+   (aA)x = -2 + 2 = 0

+ c   (aA)y = 18 ft>s2

Therefore,

  aA = 2(0)2 + (18 ft>s2)2 = 18 ft>s2 Ans.

NOTE: The fact that aA = 18 ft>s2 indicates that the instantaneous 

center of zero velocity, point A, is not a point of zero acceleration.

A

G

(a)

v � 6 rad/s
 a � 4 rad/s2

0.5 ft

G

(b)

A

rA/G

(aA)y

(aA)x

v � 6 rad/s
 a � 4 rad/s2

 2 ft/s2
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EXAMPLE   16.15

The spool shown in Fig. 16–29a unravels from the cord, such that at 

the instant shown it has an angular velocity of 3 rad>s and an angular 

acceleration of 4 rad>s2. Determine the acceleration of point B.

SOLUTION I (VECTOR ANALYSIS)
The spool “appears” to be rolling downward without slipping at  

point A. Therefore, we can use the results of Eq. 16–20 to determine 

the acceleration of point G, i.e.,

 aG = ar = (4 rad>s2)(0.5 ft) = 2 ft>s2

We will apply the acceleration equation to points G and B.

Kinematic Diagram. Point B moves along a curved path having an 

unknown radius of curvature.* Its acceleration will be represented by 

its unknown x and y components as shown in Fig. 16–29b.

Acceleration Equation.
  aB = aG + A * rB>G - v2rB>G
  (aB)xi + (aB)y j = -2j + (-4k) * (0.75j) - (3)2(0.75j)

Equating the i and j terms, the component equations are

  (aB)x = 4(0.75) = 3 ft>s2 S  (1)

  (aB)y = -2 - 6.75 = -8.75 ft>s2 = 8.75 ft>s2 T  (2)

The magnitude and direction of aB are therefore

  aB = 2(3)2 + (8.75)2 = 9.25 ft>s2 Ans.

  u = tan-1 
8.75

3
= 71.1�  c  Ans.

SOLUTION II (SCALAR ANALYSIS)
This problem may be solved by writing the scalar component equations 

directly. The kinematic diagram in Fig. 16–29c shows the relative-

acceleration components (aB>G)t and (aB>G)n . Thus,

 aB = aG + (aB>G)t + (aB>G)n

c (aB)x

S d + c (aB)y

c d
 = c2 ft>s2

T
d + c4 rad>s2 (0.75 ft)

S d + c (3 rad>s)2(0.75 ft)

T
d

The x and y components yield Eqs. 1 and 2 above.

v � 3 rad/s
a � 4 rad/s2

(a)

B

A G

0.5 ft
0.75 ft

(b)

aG � 2 ft/s2

x

y

rB/G

(aB)x

(aB)y

v � 3 rad/s
a � 4 rad/s2

(c)

rB/G � 0.75 ft

G

B (aB/G)t  � arB/G

(aB/G)n  � v2rB/G

v � 3 rad/s
a � 4 rad/s2

Fig. 16–29 

*Realize that the path’s radius of curvature r is not equal to the radius of the spool 

since the spool is not rotating about point G. Furthermore, r is not defined as the distance 

from A (IC) to B, since the location of the IC depends only on the velocity of a point and 

not the geometry of its path.
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EXAMPLE   16.16

The collar C in Fig. 16–30a moves downward with an acceleration of 

1 m>s2. At the instant shown, it has a speed of 2 m>s which gives 

links CB and AB an angular velocity vAB = vCB = 10 rad>s. (See 

Example 16.8.) Determine the angular accelerations of CB and AB 

at this instant.

(b)

C
A

B

0.2 m

0.2 m

vAB � 10 rad/s 

vCB �
 10 rad/s 

aC � 1 m/s2

x

y

rB/C
rB

ACB
AAB

Fig. 16–30 

vC � 2 m/s

(a)

C
A

B

0.2 m

0.2 m

10 rad/s
vCB �

AB �10 rad/s  

aC � 1 m/s2

v

SOLUTION (VECTOR ANALYSIS)
Kinematic Diagram. The kinematic diagrams of both links AB and 

CB are shown in Fig. 16–30b. To solve, we will apply the appropriate 

kinematic equation to each link.

Acceleration Equation.
Link AB (rotation about a fixed axis):

  aB = AAB * rB - vAB
2 rB

  aB = (aABk) * (-0.2j) - (10)2(-0.2j)

  aB = 0.2aABi + 20j

Note that aB has n and t components since it moves along a circular path. 

Link BC (general plane motion): Using the result for aB and applying 

Eq. 16–18, we have

  aB = aC + ACB * rB>C - vCB
2 rB>C

  0.2aABi + 20j = -1j + (aCBk) * (0.2i - 0.2j) - (10)2(0.2i - 0.2j)

  0.2aABi + 20j = -1j + 0.2aCB j + 0.2aCBi - 20i + 20j

Thus,

  0.2aAB = 0.2aCB - 20

  20 = -1 + 0.2aCB + 20

Solving,

  aCB = 5 rad>s2 d  Ans.

  aAB = -95 rad>s2 = 95 rad>s2 b Ans.
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EXAMPLE   16.17

The crankshaft AB turns with a clockwise angular acceleration of 

20 rad>s2, Fig. 16–31a. Determine the acceleration of the piston at the 

instant AB is in the position shown. At this instant vAB = 10 rad>s and 

vBC = 2.43 rad>s. (See Example 16.12.)

SOLUTION (VECTOR ANALYSIS)
Kinematic Diagram. The kinematic diagrams for both AB and BC 

are shown in Fig. 16–31b. Here aC is vertical since C moves along a 

straight-line path.

Acceleration Equation. Expressing each of the position vectors in 

Cartesian vector form

 rB = 5-0.25 sin 45�i + 0.25 cos 45�j6  ft = 5-0.177i + 0.177j6  ft

 rC>B = 50.75 sin 13.6�i + 0.75 cos 13.6�j6  ft = 50.177i + 0.729j6  ft

Crankshaft AB (rotation about a fixed axis):

  aB = AAB * rB - vAB
2 rB

  = (-20k) * (-0.177i + 0.177j) - (10)2(-0.177i + 0.177j)

  = 521.21i - 14.14j6  ft>s2

Connecting Rod BC (general plane motion): Using the result for aB 

and noting that aC is in the vertical direction, we have

 aC = aB + ABC * rC>B - vBC
2 rC>B

13.6�

45�

(a)

B

A

C

0.75 ft

0.25 ft

vBC � 2.43 rad/s

vAB � 10 rad/s
aAB � 20 rad/s2

13.6�

45�

(b)

B

A

C

0.75 cos 13.6� ft

x

y

0.25 cos 45� ft rB

rC/B

aC

vBC � 2.43 rad/s

vAB � 10 rad/s
aAB � 20 rad/s2

aBC

Fig. 16–31 

 aCj = 21.21i - 14.14j + (aBCk) * (0.177i + 0.729j) - (2.43)2(0.177i + 0.729j) 

 aCj = 21.21i - 14.14j + 0.177aBC j - 0.729aBCi - 1.04i - 4.30j

  0 = 20.17 - 0.729aBC

  aC = 0.177aBC - 18.45

Solving yields

 aBC = 27.7 rad>s2 d

  aC = -13.5 ft>s2  Ans.

NOTE: Since the piston is moving upward, the negative sign for aC 

indicates that the piston is decelerating, i.e., aC = 5-13.5j6  ft>s2. This 

causes the speed of the piston to decrease until AB becomes vertical, 

at which time the piston is momentarily at rest.
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PRELIMINARY PROBLEM

P16–3.  Set up the relative acceleration equation between 

points A and B. The angular velocity is given.

45�

A

v � 2.12 rad/s

3 m

3 m/s

2 m/s2

2 m

(a)

B

45�

A

v � 4 rad/s

a � 2 rad/s2
2 m

(b)

B

No slipping

4 m

2 m

1 m

A B

6 rad/s

3 rad/s
2 rad/s2

v � 0

2 m

v � 3 rad/s

6 m/s2

A
B

60�

2 m

A

4 rad/s
8 rad/s2

(e)

B 30�

v � 1.15 rad/s

0.5 m

(f)

v � 4 rad/s

a � 2 rad/s2

0.5 m
A

B

Prob. P16–3

(d)

(c)
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FUNDAMENTAL PROBLEMS

F16–19. At the instant shown, end A of the rod has the 

velocity and acceleration shown. Determine the angular 

acceleration of the rod and acceleration of end B of the rod. 

F16–22. At the instant shown, cable AB has a velocity of 

3 m>s and acceleration of 1.5 m>s2, while the gear rack has a 

velocity of 1.5 m>s and acceleration of 0.75 m>s2. Determine 

the angular acceleration of the gear at this instant. 

B

C

0.3 m
0.2 m

O

A

vB � 3 m/s
aB � 1.5 m/s2

vC � 1.5 m/s
aC � 0.75 m/s2

Prob. F16–22 

F16–23. At the instant shown, the wheel rotates with an 

angular velocity of v = 12 rad>s and an angular acceleration 

of a = 6 rad>s2. Determine the angular acceleration of  

link BC at the instant shown.

B

0.3 m

 v � 12 rad/s
 a � 6 rad/s2

D

C
45�

0.3 m

1.2 m

Prob. F16–23 

F16–24. At the instant shown, wheel A rotates with an 

angular velocity of v = 6 rad>s and an angular acceleration 

of a = 3 rad>s2. Determine the angular acceleration of  

link BC and the acceleration of piston C. 

A

v � 6 rad/s

0.2 m

0.8 m

C

B

 a � 3 rad/s2

30�

Prob. F16–24 

A

5 m
4 m

B

vA � 6 m/s
aA � 5 m/s2

Prob. F16–19 

F16–20. The gear rolls on the fixed rack with an angular 

velocity of v = 12 rad>s and angular acceleration of 

a = 6 rad>s2. Determine the acceleration of point A. 

0.3 m

O

A
 v � 12 rad/s
 a � 6 rad/s2

Prob. F16–20 

F16–21. The gear rolls on the fixed rack B. At the instant 

shown, the center O of the gear moves with a velocity of 

vO = 6 m>s and acceleration of aO = 3 m>s2. Determine 

the angular acceleration of the gear and acceleration of 

point A at this instant. 

A

B

0.6 m 0.3 m

O
vO � 6 m/s
aO � 3 m/s2

Prob. F16–21 
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16–103. Bar AB has the angular motions shown. Determine 

the velocity and acceleration of the slider block C at this 

instant.

1 m

0.5 m       

B

A

C

45�

60�

vAB � 4 rad/s

AB � 6 rad/s2a

Prob. 16–103

*16–104. At a given instant the bottom A of the ladder has 

an acceleration aA = 4 ft>s2 and velocity vA = 6 ft>s, both 

acting to the left. Determine the acceleration of the top of 

the ladder, B, and the ladder’s angular acceleration at this 

same instant.

16–105. At a given instant the top B of the ladder has an 

acceleration aB = 2 ft>s2 and a velocity of vB = 4 ft>s, both 

acting downward. Determine the acceleration of  

the bottom A of the ladder, and the ladder’s angular 

acceleration at this instant.

30�A

B
16 ft

Probs. 16–104/105

16–106. Member AB has the angular motions shown. 

Determine the velocity and acceleration of the slider block 

C at this instant.

2 m

0.5 m

4 rad/s
5 rad/s2

A
C

B

5
3

4

Prob. 16–106

16–107. At a given instant the roller A on the bar has the 

velocity and acceleration shown. Determine the velocity 

and acceleration of the roller B, and the bar’s angular 

velocity and angular acceleration at this instant.

A

B

0.6 m

30�  

30�

4 m/s
6 m/s2

Prob. 16–107

PROBLEMS
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16–110. The slider block has the motion shown. Determine 

the angular velocity and angular acceleration of the wheel 

at this instant.

400 mm

A

C

B

150 mm

vB � 4 m/s 
aB � 2 m/s2 

Prob. 16–110

16–111. At a given instant the slider block A is moving to 

the right with the motion shown. Determine the angular 

acceleration of link AB and the acceleration of point B at 

this instant.

2 m

2 m

30� A

B

vA � 4 m/s
aA � 6 m/s2

Prob. 16–111

*16–108. The rod is confined to move along the path due 

to the pins at its ends. At the instant shown, point A has the 

motion shown. Determine the velocity and acceleration of 

point B at this instant.

3 ft

A

B

vA � 6 ft/s

aA � 3 ft/s2

5 ft

Prob. 16–108

16–109. Member AB has the angular motions shown. 

Determine the angular velocity and angular acceleration of 

members CB and DC.

vAB � 2 rad/s

aAB � 4 rad/s2

200 mm

450 mm

60�100 mm

B

A

D

C

Prob. 16–109
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*16–112. Determine the angular acceleration of link CD 

if link AB has the angular velocity and angular acceleration 

shown.

0.5 m
0.5 m

1 m

A

B

C

D

1 m

aAB � 6 rad/s2

vAB � 3 rad/s

Prob. 16–112

16–113. The reel of rope has the angular motion shown. 

Determine the velocity and acceleration of point A at the 

instant shown.

16–114. The reel of rope has the angular motion shown. 

Determine the velocity and acceleration of point B at the 

instant shown.

A

B
100 mm

C
 � 3 rad/s
 � 8 rad/s2

v
a

Probs. 16–113/114

16–115. A cord is wrapped around the inner spool of the 

gear. If it is pulled with a constant velocity v, determine the 

velocities and accelerations of points A and B. The gear 

rolls on the fixed gear rack.

G

B

r

2r

v

A

Prob. 16–115

*16–116. The disk has an angular acceleration a = 8 rad>s2 

and angular velocity v = 3 rad>s at the instant shown. If it 

does not slip at A, determine the acceleration of point B.

C

A

B

0.5 m
45�

45�

 � 3 rad/s
 � 8 rad/s2a
v

Prob. 16–116
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16–117. The disk has an angular acceleration a = 8 rad>s2 

and angular velocity v = 3 rad>s at the instant shown. If it 

does not slip at A, determine the acceleration of point C.

C

A

B

0.5 m
45�

45�

 � 3 rad/s
 � 8 rad/s2a
v

Prob. 16–117

16–118. A single pulley having both an inner and outer rim 

is pin connected to the block at A. As cord CF unwinds 

from the inner rim of the pulley with the motion shown, 

cord DE unwinds from the outer rim. Determine the 

angular acceleration of the pulley and the acceleration of 

the block at the instant shown.

E

D

C A

25 mm50 mm

F

a  � 3 m/s2
vF

F

 � 2 m/s

Prob. 16–118

16–119. The wheel rolls without slipping such that at the 

instant shown it has an angular velocity V and angular 

acceleration A. Determine the velocity and acceleration of 

point B on the rod at this instant.

2a
a

OA

B

v, a

Prob. 16–119

*16–120. The collar is moving downward with the motion 

shown. Determine the angular velocity and angular 

acceleration of the gear at the instant shown as it rolls along 

the fixed gear rack.

O

200 mm

60�

500 mmA v � 2 m/s
a � 3 m/s2

B 

150 mm

Prob. 16–120
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16–121. The tied crank and gear mechanism gives rocking 

motion to crank AC, necessary for the operation of a 

printing press. If link DE has the angular motion shown, 

determine the respective angular velocities of gear F and 

crank AC at this instant, and the angular acceleration of 

crank AC.

100 mm

100 mm

75 mm

A

B

G

F

C

D
E

50 mm

150 mm

30�

vDE � 4 rad/s

aDE � 20 rad/s2

Prob. 16–121

16–122. If member AB has the angular motion shown, 

determine the angular velocity and angular acceleration of 

member CD at the instant shown.

u

vAB � 3 rad/s
aAB � 8 rad/s2 

300 mm

200 mm

A B

D

C
 � 60�

500 mm

Prob. 16–122

16–123. If member AB has the angular motion shown, 

determine the velocity and acceleration of point C at the 

instant shown.

u

vAB � 3 rad/s
aAB � 8 rad/s2 

300 mm

200 mm

A B

D

C
 � 60�

500 mm

Prob. 16–123

*16–124. The disk rolls without slipping such that it has an 

angular acceleration of a = 4 rad>s2 and angular velocity of 

v = 2 rad>s at the instant shown. Determine the 

acceleration of points A and B on the link and the link’s 

angular acceleration at this instant. Assume point A lies on 

the periphery of the disk, 150 mm from C.

v � 2 rad/s
a � 4 rad/s2

500 mm

400 mm

150 mm
C

B

A

Prob. 16–124
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16–125. The ends of the bar AB are confined to move 

along the paths shown. At a given instant, A has a velocity 

of vA = 4 ft>s and an acceleration of aA = 7 ft>s2. 

Determine the angular velocity and angular acceleration  

of AB at this instant.

2 ft

2 ft
60�

A

B

vA � 4 ft/s
aA � 7 ft/s2

Prob. 16–125

16–126. The mechanism produces intermittent motion of 

link AB. If the sprocket S is turning with an angular 

acceleration aS = 2 rad>s2 and has an angular velocity  

vS = 6 rad>s at the instant shown, determine the angular 

velocity and angular acceleration of link AB at this instant. 

The sprocket S is mounted on a shaft which is separate from 

a collinear shaft attached to AB at A. The pin at C is 

attached to one of the chain links such that it moves 

vertically downward.

15�30�

200 mm

150 mm

175 mm

A

B

CS

D

50 mm

vS � 6 rad/s

aS � 2 rad/s2

Prob. 16–126

16–127. The slider block moves with a velocity of 

vB = 5 ft>s and an acceleration of aB = 3 ft>s2. Determine 

the angular acceleration of rod AB at the instant shown.

B

vB � 5 ft/s
aB � 3 ft/s2

A

1.5 ft

2 ft

30�

Prob. 16–127

*16–128. The slider block moves with a velocity of 

vB = 5 ft>s and an acceleration of aB = 3 ft>s2. Determine 

the acceleration of A at the instant shown.

B

vB � 5 ft/s
aB � 3 ft/s2

A

1.5 ft

2 ft

30�

Prob. 16–128
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*The more general, three-dimensional motion of the points is developed in Sec. 20.4.

Y

X

y
x

A

B

rB

rA

yB

xB

rB/A

(a)

�
� .

Fig. 16–32 

16.8  Relative-Motion Analysis using 
Rotating Axes

In the previous sections the relative-motion analysis for velocity and 

acceleration was described using a translating coordinate system. This 

type of analysis is useful for determining the motion of points on the 

same rigid body, or the motion of points located on several pin-connected 

bodies. In some problems, however, rigid bodies (mechanisms) are 

constructed such that sliding will occur at their connections. The 

kinematic analysis for such cases is best performed if the motion is 

analyzed using a coordinate system which both translates and rotates. 

Furthermore, this frame of reference is useful for analyzing the motions 

of two points on a mechanism which are not located in the same body 

and for specifying the kinematics of particle motion when the particle 

moves along a rotating path.

In the following analysis two equations will be developed which relate 

the velocity and acceleration of two points, one of which is the origin of a 

moving frame of reference subjected to both a translation and a rotation 

in the plane.*

Position. Consider the two points A and B shown in Fig. 16–32a. 

Their location is specified by the position vectors rA and rB , which are 

measured with respect to the fixed X, Y, Z coordinate system. As shown 

in the figure, the “base point” A represents the origin of the x, y, z 

coordinate system, which is assumed to be both translating and rotating 

with respect to the X, Y, Z system. The position of B with respect to A is 

specified by the relative-position vector rB>A . The components of this 

vector may be expressed either in terms of unit vectors along the X, Y 

axes, i.e., I and J, or by unit vectors along the x, y axes, i.e., i and j. For 

the development which follows, rB>A will be measured with respect to 

the moving x, y frame of reference. Thus, if B has coordinates (xB , yB), 

Fig. 16–32a, then

rB>A = xBi + yBj

Using vector addition, the three position vectors in Fig. 16–32a are 

related by the equation

 rB = rA + rB>A  (16–21)

At the instant considered, point A has a velocity vA and an acceleration 

aA , while the angular velocity and angular acceleration of the x, y axes 

are � (omega) and �
#
= d� >dt, respectively.
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Velocity. The velocity of point B is determined by taking the time 

derivative of Eq. 16–21, which yields

 vB = vA +
drB>A

dt
 (16–22)

The last term in this equation is evaluated as follows:

  
drB>A

dt
=

d

dt
 (xBi + yB j)

  =
dxB

dt
 i + xB 

di
dt

+
dyB

dt
 j + yB 

dj

dt

  = a dxB

dt
 i +

dyB

dt
 jb + axB 

di
dt

+ yB 
dj

dt
b  (16–23)

The two terms in the first set of parentheses represent the components 

of velocity of point B as measured by an observer attached to the 

moving x, y, z coordinate system. These terms will be denoted by vector 

(vB>A)xyz . In the second set of parentheses the instantaneous time rate 

of change of the unit vectors i and j is measured by an observer located 

in the fixed X, Y, Z coordinate system. These changes, di and dj, are due 

only to the rotation du of the x, y, z axes, causing i to become i� = i + di 
and j to become j� = j + dj, Fig. 16–32b. As shown, the magnitudes of 

both di and dj equal 1 du, since i = i� = j = j� = 1. The direction of di 
is defined by +j, since di is tangent to the path described by the 

arrowhead of i in the limit as �t S dt. Likewise, dj acts in the - i 
direction, Fig. 16–32b. Hence,

di
dt

=
du

dt
 (j) = �j  

dj

dt
=

du

dt
 (- i) = - �i

Viewing the axes in three dimensions, Fig. 16–32c, and noting that 

� = �k, we can express the above derivatives in terms of the cross 

product as

 
di
dt

= � * i  
dj

dt
= � * j (16–24)

Substituting these results into Eq. 16–23 and using the distributive 

property of the vector cross product, we obtain

drB>A
dt

= (vB>A)xyz + � * (xBi + yB j) = (vB>A)xyz + � * rB>A (16–25)

j
j¿

x

y

djdu

j � 1 i � 1

du
i¿ di

(b)

i

�

x

z

y
j

k
i

(c)

�

Fig. 16–32 (cont.) 
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Hence, Eq. 16–22 becomes

 vB = vA + � * rB>A + (vB>A)xyz  (16–26)

where

  vB = velocity of B, measured from the X, Y, Z reference

  vA =  velocity of the origin A of the x, y, z reference, measured 

from the X, Y, Z reference

  (vB>A)xyz =  velocity of “B with respect to A,” as measured by an 

observer attached to the rotating x, y, z reference

  � =  angular velocity of the x, y, z reference, measured from the 

X, Y, Z reference

  rB>A = position of B with respect to A

Comparing Eq. 16–26 with Eq. 16–16 (vB = vA + � * rB>A), which is 

valid for a translating frame of reference, it can be seen that the only 

difference between these two equations is represented by the  

term (vB>A)xyz .

When applying Eq. 16–26 it is often useful to understand what each of 

the terms represents. In order of appearance, they are as follows:

vB e absolute velocity of B
 fmotion of B observed

from the X, Y, Z frame
 

(equals) 

vA e absolute velocity of the 

origin of x, y, z frame
  

(plus) 

� * rB>A e angular velocity effect caused

by rotation of x, y, z frame
  

(plus) 

(vB>A)xyz evelocity of B

with respect to A
 fmotion of B observed

from the x, y, z frame

ymotion of x, y, z frame

observed from the

X, Y, Z frame
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Acceleration. The acceleration of B, observed from the X, Y, Z 

coordinate system, may be expressed in terms of its motion measured 

with respect to the rotating system of coordinates by taking the time 

derivative of Eq. 16–26.

 
dvB

dt
=

dvA

dt
+

d�

dt
* rB>A + � *

drB>A
dt

+
d(vB>A)xyz

dt

 aB = aA + �
#

* rB>A + � *
drB>A

dt
+

d(vB>A)xyz

dt
 (16–27)

Here �
#
= d� >dt is the angular acceleration of the x, y, z coordinate 

system. Since � is always perpendicular to the plane of motion, then �
#

  

measures only the change in magnitude of �. The derivative drB>A>dt is 

defined by Eq. 16–25, so that

 � *
drB>A

dt
= � * (vB>A)xyz + � * (� * rB>A) (16–28)

Finding the time derivative of (vB>A)xyz = (vB>A)xi + (vB>A)y j,

d(vB>A)xyz

dt
= c d(vB>A)x

dt
 i +

d(vB>A)y

dt
 j d + c (vB>A)x 

di
dt

+ (vB>A)y 
dj

dt
d

The two terms in the first set of brackets represent the components of 

acceleration of point B as measured by an observer attached to the 

rotating coordinate system. These terms will be denoted by (aB>A)xyz . The 

terms in the second set of brackets can be simplified using Eqs. 16–24.

d(vB>A)xyz

dt
= (aB>A)xyz + � * (vB>A)xyz

Substituting this and Eq. 16–28 into Eq. 16–27 and rearranging terms,

aB = aA + �
#

* rB>A + � * (� * rB>A) + 2� * (vB>A)xyz + (aB>A)xyz

 (16–29)

where

 aB =  acceleration of B, measured from the X, Y, Z 

reference

 aA =  acceleration of the origin A of the x, y, z reference, 

measured from the X, Y, Z reference

 (aB>A)xyz , (vB>A)xyz =  acceleration and velocity of B with respect to A, as 

measured by an observer attached to the rotating x, 

y, z reference

 �
#

, � =  angular acceleration and angular velocity of the  

x, y, z reference, measured from the X, Y, Z reference

 rB>A = position of B with respect to A



 16.8 RELATIVE-MOTION ANALYSIS USING ROTATING AXES 393

16

If Eq. 16–29 is compared with Eq. 16–18, written in the form 

aB = aA + �
#

* rB>A + � * (� * rB>A), which is valid for a translating 

frame of reference, it can be seen that the difference between these two 

equations is represented by the terms 2� * (vB>A)xyz and (aB>A)xyz . In 

particular, 2� * (vB>A)xyz is called the Coriolis acceleration, named after 

the French engineer G. C. Coriolis, who was the first to determine it. This 

term represents the difference in the acceleration of B as measured from 

nonrotating and rotating x, y, z axes. As indicated by the vector cross 

product, the Coriolis acceleration will always be perpendicular to both � 

and (vB>A)xyz . It is an important component of the acceleration which must 

be considered whenever rotating reference frames are used. This often 

occurs, for example, when studying the accelerations and forces which act 

on rockets, long-range projectiles, or other bodies having motions whose 

measurements are significantly affected by the rotation of the earth.

The following interpretation of the terms in Eq. 16–29 may be useful 

when applying this equation to the solution of problems.

aB e absolute acceleration of B fmotion of B observed

from the X, Y, Z frame

 (equals)

aA e absolute acceleration of the 

origin of x, y, z frame
 

 (plus) 

�
#

* rB>A c angular acceleration effect

caused by rotation of x, y, z

frame

 

 (plus)

� * (� * rB>A) e angular velocity effect caused

by rotation of x, y, z frame

 (plus)

2� * (vB>A)xyz c combined effect of B moving

relative to x, y, z coordinates

and rotation of x, y, z frame

  s interacting motion

(plus)

(aB>A)xyz e acceleration of B with

respect to A
fmotion of B observed

from the x, y, z frame

motion of

x, y, z frame

observed from

the X, Y, Z frame

y
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Procedure for Analysis

Equations 16–26 and 16–29 can be applied to the solution of problems 

involving the planar motion of particles or rigid bodies using the 

following procedure.

Coordinate Axes.
  Choose an appropriate location for the origin and proper 

orientation of the axes for both fixed X, Y, Z and moving x, y, z 

reference frames.

  Most often solutions are easily obtained if at the instant considered:

  1. the origins are coincident

  2. the corresponding axes are collinear

  3. the corresponding axes are parallel

  The moving frame should be selected fixed to the body or device 

along which the relative motion occurs.

Kinematic Equations.
  After defining the origin A of the moving reference and specifying 

the moving point B, Eqs. 16–26 and 16–29 should be written in 

symbolic form

 vB = vA + � * rB>A + (vB>A)xyz

 aB = aA + �
#

* rB>A + � * (� * rB>A) + 2� * (vB>A)xyz + (aB>A)xyz

  The Cartesian components of all these vectors may be expressed 

along either the X, Y, Z axes or the x, y, z axes. The choice is 

arbitrary provided a consistent set of unit vectors is used.

  Motion of the moving reference is expressed by vA , aA , �, and 

�
#

; and motion of B with respect to the moving reference is 

expressed by rB>A , (vB>A)xyz , and (aB>A)xyz .

y

x

C

A

B
The rotation of the dumping bin of the 
truck about point C is operated by the 
extension of the hydraulic cylinder AB. 
To determine the rotation of the bin 
due to this extension, we can use the 
equations of relative motion and fix  
the x, y axes to the cylinder so that the 
relative motion of the cylinder’s 
extension occurs along the y axis. 
(© R.C. Hibbeler)
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EXAMPLE   16.18

At the instant u = 60�, the rod in Fig. 16–33 has an angular velocity of 

3 rad>s and an angular acceleration of 2 rad>s2. At this same instant, 

collar C travels outward along the rod such that when x = 0.2 m the 

velocity is 2 m>s and the acceleration is 3 m>s2, both measured relative 

to the rod. Determine the Coriolis acceleration and the velocity and 

acceleration of the collar at this instant.

SOLUTION
Coordinate Axes. The origin of both coordinate systems is located 

at point O, Fig. 16–33. Since motion of the collar is reported relative to 

the rod, the moving x, y, z frame of reference is attached to the rod.

Kinematic Equations.
 vC = vO + � * rC>O + (vC>O)xyz (1)

 aC = aO  

+   �
#

* rC>O  

+   � * (� * rC>O)    +   2� * (vC>O)xyz  

+   (aC>O)xyz

 (2)

It will be simpler to express the data in terms of i, j, k component 

vectors rather than I, J, K components. Hence,

Motion of  
moving reference

Motion of C with respect  
to m oving reference

 vO = 0  rC>O = 50.2i6  m

 aO = 0  (vC>O)xyz = 52i6  m>s
 � = 5-3k6  rad>s  (aC>O)xyz = 53i6  m>s2

 �
#
= 5-2k6  rad>s2

The Coriolis acceleration is defined as

 aCor = 2� * (vC>O)xyz = 2(-3k) * (2i) = 5-12j6  m>s2 Ans.

This vector is shown dashed in Fig. 16–33. If desired, it may be resolved 

into I, J components acting along the X and Y axes, respectively.

The velocity and acceleration of the collar are determined by 

substituting the data into Eqs. 1 and 2 and evaluating the cross products, 

which yields 

Y

X

y

x

x � 0.2 m

C
3 m/s2

2 m/s
aCor

30� 

2 rad/s2

3 rad/s u � 60�

O

Fig. 16–33 

 vC = vO + � * rC>O + (vC>O)xyz

 = 0 + (-3k) * (0.2i) + 2i

 = 52i - 0.6j6  m>s  Ans.

 aC = aO + �
#

* rC>O + � * (� * rC>O) + 2� * (vC>O)xyz + (aC>O)xyz

 = 0 + (-2k) * (0.2i) + (-3k) * [(-3k) * (0.2i)] + 2(-3k) * (2i) + 3i

 = 0 - 0.4j - 1.80i - 12j + 3i

 = 51.20i - 12.4j6  m>s2  Ans.



396  CHAPTER 16  PLANAR KINEMATICS OF A RIG ID BODY

16

EXAMPLE   16.19

Rod AB, shown in Fig. 16–34, rotates clockwise such that it has an 

angular velocity vAB = 3 rad>s and angular acceleration aAB = 4 rad>s2 

when u = 45�. Determine the angular motion of rod DE at this instant. 

The collar at C is pin connected to AB and slides over rod DE.

SOLUTION
Coordinate Axes. The origin of both the fixed and moving frames 

of reference is located at D, Fig. 16–34. Furthermore, the x, y, z reference 

is attached to and rotates with rod DE so that the relative motion of 

the collar is easy to follow.

Kinematic Equations. 
 vC = vD + � * rC>D + (vC>D)xyz (1)

0.4 m

Y, y

X, x

B

E
VDE, ADE

0.4 m

A

u � 45�

aAB � 4 rad/s2
vAB � 3 rad/s

C

D

Fig. 16–34 
 aC = aD + �

#
* rC>D + � * (� * rC>D) + 2� * (vC>D)xyz + (aC>D)xyz

 (2)

All vectors will be expressed in terms of i, j, k components.

Motion of  
moving reference

Motion of C with respect  
to moving reference 

 vD = 0  rC>D = 50.4i6m

 aD = 0  (vC>D)xyz = (vC>D)xyzi
 � = -vDEk  (aC>D)xyz = (aC>D)xyzi

 �
#
= -aDEk

Motion of C: Since the collar moves along a circular path of radius 

AC, its velocity and acceleration can be determined using Eqs. 16–9 

and 16–14.

 vC = VAB * rC>A = (-3k) * (0.4i + 0.4j) = 51.2i - 1.2j6  m>s
 aC = AAB * rC>A - vAB

2 rC>A
 = (-4k) * (0.4i + 0.4j) - (3)2(0.4i + 0.4j) = 5-2i - 5.2j6  m>s2

Substituting the data into Eqs. 1 and 2, we have

  vC = vD + � * rC>D + (vC>D)xyz

  1.2i - 1.2j = 0 + (-vDEk) * (0.4i) + (vC>D)xyzi
  1.2i - 1.2j = 0 - 0.4vDE j + (vC>D)xyzi
  (vC>D)xyz = 1.2 m>s
  vDE = 3 rad>s b  Ans.

 aC = aD + �
#

* rC>D + � * (� * rC>D) + 2� * (vC>D)xyz + (aC>D)xyz

  -2i - 5.2j = 0 + (-aDEk) * (0.4i) + (-3k) * [(-3k) * (0.4i)]

  +  2(-3k) * (1.2i) + (aC>D)xyzi
  -2i - 5.2j = -0.4aDE j - 3.6i - 7.2j + (aC>D)xyzi
  (aC>D)xyz = 1.6 m>s2

  aDE = -5 rad>s2 = 5 rad>s2d Ans.
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4 km

400 km

50 km/h2

700 km/h

600 km/h 100 km/h2

x, X

y, Y

rA/BA B

Fig. 16–35 

EXAMPLE   16.20

Planes A and B fly at the same elevation and have the motions shown 

in Fig. 16–35. Determine the velocity and acceleration of A as 

measured by the pilot of B.

SOLUTION
Coordinate Axes. Since the relative motion of A with respect to 

the pilot in B is being sought, the x, y, z axes are attached to plane B, 

Fig. 16–35. At the instant considered, the origin B coincides with the 

origin of the fixed X, Y, Z frame.

Kinematic Equations.
 vA = vB + � * rA>B + (vA>B)xyz (1)

 aA = aB + �
#

* rA>B + � * (� * rA>B) + 2� * (vA>B)xyz + (aA>B)xyz 

 (2)

Motion of Moving Reference:
 vB = 5600j6  km>h

 (aB)n =
vB

2

r
=

(600)2

400
= 900 km>h2

 aB = (aB)n + (aB)t = 5900i - 100j6  km>h2

 � =
vB

r
=

600 km>h
400 km

= 1.5 rad>h b  � = 5-1.5k6  rad>h
 �
#
=

(aB)t

r
=

100 km>h2

400 km
= 0.25 rad>h2d  �

#
= 50.25k6  rad>h2

Motion of A with Respect to Moving Reference:

 rA>B = 5-4i6  km (vA>B)xyz = ? (aA>B)xyz = ?

Substituting the data into Eqs. 1 and 2, realizing that vA = 5700j6km>h 

and aA = 550j6  km>h2, we have

  vA = vB + � * rA>B + (vA>B)xyz

  700j = 600j + (-1.5k) * (-4i) + (vA>B)xyz

  (vA>B)xyz = 594j6  km>h  Ans.

 aA = aB + �
#

* rA>B + � * (� * rA>B) + 2� * (vA>B)xyz + (aA>B)xyz

 50j = (900i - 100j) + (0.25k) * (-4i)

  + (-1.5k) * [(-1.5k) * (-4i)] + 2(-1.5k) * (94j) + (aA>B)xyz

 (aA>B)xyz = 5-1191i + 151j6  km>h2 Ans.

NOTE: The solution of this problem should be compared with that of 

Example 12.26, where it is seen that (vB>A)xyz � (vA>B)xyz and 

(aB>A)xyz � (aA>B)xyz.
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16–129. At the instant shown, ball B is rolling along the slot 

in the disk with a velocity of 600 mm>s and an acceleration of 

150 mm>s2, both measured relative to the disk and directed 

away from O. If at the same instant the disk has the angular 

velocity and angular acceleration shown, determine the 

velocity and acceleration of the ball at this instant.

yx

z
v � 6 rad/s
a � 3 rad/s2

0.4 m

0.8 m
B

O

Prob. 16–129

16–130. The crane’s telescopic boom rotates with the 

angular velocity and angular acceleration shown. At the 

same instant, the boom is extending with a constant speed 

of 0.5 ft>s, measured relative to the boom. Determine the 

magnitudes of the velocity and acceleration of point B at 

this instant.

B

A30�

60 ft

vAB � 0.02 rad/s
aAB � 0.01 rad/s2

Prob. 16–130

16–131. While the swing bridge is closing with a constant 

rotation of 0.5 rad>s, a man runs along the roadway at a 

constant speed of 5 ft>s relative to the roadway. Determine 

his velocity and acceleration at the instant d = 15 ft.

d
z

x y

O

v � 0.5 rad/s

Prob. 16–131

*16–132. While the swing bridge is closing with a constant 

rotation of 0.5 rad>s, a man runs along the roadway such 

that when d = 10 ft he is running outward from the center 

at 5 ft>s with an acceleration of 2 ft>s2, both measured 

relative to the roadway. Determine his velocity and 

acceleration at this instant.

d
z

x y

O

v � 0.5 rad/s

Prob. 16–132

PROBLEMS
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16–133. Water leaves the impeller of the centrifugal pump 

with a velocity of 25 m>s and acceleration of 30 m>s2, both 

measured relative to the impeller along the blade line AB. 

Determine the velocity and acceleration of a water particle at 

A as it leaves the impeller at the instant shown. The impeller 

rotates with a constant angular velocity of v = 15 rad>s.

v � 15 rad/s

B

A

0.3 m

y

x

30�

Prob. 16–133

16–134. Block A, which is attached to a cord, moves along 

the slot of a horizontal forked rod. At the instant shown, the 

cord is pulled down through the hole at O with an 

acceleration of 4 m>s2 and its velocity is 2 m>s. Determine 

the acceleration of the block at this instant. The rod rotates 

about O with a constant angular velocity v = 4 rad>s.

O

100 mm

A

y x

v

Prob. 16–134

16–135. Rod AB rotates counterclockwise with a constant 

angular velocity v = 3 rad>s. Determine the velocity of 

point C located on the double collar when u = 30°. The 

collar consists of two pin-connected slider blocks which are 

constrained to move along the circular path and the rod AB.

*16–136. Rod AB rotates counterclockwise with a constant 

angular velocity v = 3 rad>s. Determine the velocity and 

acceleration of point C located on the double collar when  

u = 45°. The collar consists of two pin-connected slider 

blocks which are constrained to move along the circular 

path and the rod AB.

BC

0.4 m

A

v = 3 rad/s
u

Probs. 16–135/136

16–137. Particles B and A move along the parabolic and 

circular paths, respectively. If B has a velocity of 7 m>s in 

the direction shown and its speed is increasing at 4 m>s2, 

while A has a velocity of 8 m>s in the direction shown and 

its speed is decreasing at 6 m>s2, determine the relative 

velocity and relative acceleration of B with respect to A.

A

B
x

y

1 m

2 m

vB � 7 m/s

vA � 8 m/s

y � x2

Prob. 16–137
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16–138. Collar B moves to the left with a speed of 5 m>s, 
which is increasing at a constant rate of 1.5 m>s2, relative to 

the hoop, while the hoop rotates with the angular velocity 

and angular acceleration shown. Determine the magnitudes 

of the velocity and acceleration of the collar at this instant.

A

B

200 mm

450 mm

v � 6 rad/s
a � 3 rad/s2

Prob. 16–138

16–139. Block D of the mechanism is confined to move 

within the slot of member CB. If link AD is rotating at a 

constant rate of vAD = 4 rad>s, determine the angular velocity 

and angular acceleration of member CB at the instant shown.

30�

D

A

B

300 mm

200 mm

C

vAD � 4 rad/s

Prob. 16–139

*16–140. At the instant shown rod AB has an angular 

velocity vAB = 4 rad>s and an angular acceleration 

aAB = 2 rad>s2. Determine the angular velocity and angular 

acceleration of rod CD at this instant. The collar at C is pin 

connected to CD and slides freely along AB.

B

v

a

D

A

C

0.5 m60�

AB � 4 rad/s
AB � 2 rad/s2

0.75 m

Prob. 16–140

16–141. The collar C is pinned to rod CD while it slides on 

rod AB. If rod AB has an angular velocity of 2 rad>s  

and an angular acceleration of 8 rad>s2, both acting 

counterclockwise, determine the angular velocity and the 

angular acceleration of rod CD at the instant shown.

D

A

B

C

1 m

60�

1.5 m

vAB � 2 rad/s
aAB � 8 rad/s2

Prob. 16–141

16–142. At the instant shown, the robotic arm AB is 

rotating counterclockwise at v = 5 rad>s and has an angular 

acceleration a = 2 rad>s2. Simultaneously, the grip BC is 

rotating counterclockwise at v� = 6 rad>s and a� = 2 rad>s2, 

both measured relative to a fixed reference. Determine the 

velocity and acceleration of the object held at the grip C.

15�

30� 

125 mm

300 mm
B

v¿, a¿

v, a

y

x

C

A

Prob. 16–142

16–143. Peg B on the gear slides freely along the slot in 

link AB. If the gear’s center O moves with the velocity and 

acceleration shown, determine the angular velocity and 

angular acceleration of the link at this instant.

vO � 3 m/s
aO � 1.5 m/s2

A

O

B

600 mm

150 mm

150 mm

Prob. 16–143
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*16–144. The cars on the amusement-park ride rotate around 

the axle at A with a constant angular velocity vA>f = 2 rad>s, 

measured relative to the frame AB. At the same time the frame 

rotates around the main axle support  at B with a constant 

angular velocity vf = 1 rad>s. Determine the velocity and 

acceleration of the passenger at C at the instant shown.

D

C

8 ft
8 ft

vf � 1 rad/s

vA/f � 2 rad/s
15 ft

A

B
30�

x

y

Prob. 16–144

16–145. A ride in an amusement park consists of a rotating 

arm AB having a constant angular velocity vAB = 2 rad>s 

point A and a car mounted at the end of the arm which has 

a constant angular velocity V� = {−0.5k} rad>s, measured 

relative to the arm. At the instant shown, determine the 

velocity and acceleration of the passenger at C.

16–146. A ride in an amusement park consists of a rotating 

arm AB that has an angular acceleration of aAB = 1 rad>s2 

when vAB = 2 rad>s at the instant shown. Also at this instant 

the car mounted at the end of the arm has an angular 

acceleration of A = {−0.6k} rad>s2 and angular velocity of V�
= {−0.5k} rad>s, measured relative to the arm. Determine 

the velocity and acceleration of the passenger C at this instant.

60�

30�

B

C

A
x

y 2 ft
10 ft

vAB � 2 rad/s

v¿ � 0.5 rad/s

Probs. 16–145/146

16–147. If the slider block C is fixed to the disk that has a 

constant counterclockwise angular velocity of 4 rad>s, 
determine the angular velocity and angular acceleration of 

the slotted arm AB at the instant shown.

180 mm

A

B
40 mm

60�

C 60 mm

v � 4 rad/s30�

Prob. 16–147

*16–148. At the instant shown, car A travels with a speed 

of 25 m>s, which is decreasing at a constant rate of 2 m>s2, 

while car C travels with a speed of 15 m>s, which is increasing 

at a constant rate of 3 m>s. Determine the velocity and 

acceleration of car A with respect to car C.

 250 m

15 m/s
2 m/s2

200 m

A

B

15 m/s
3 m/s2

25 m/s

2 m/s2

C

45�

Prob. 16–148
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16–149. At the instant shown, car B travels with a speed of 

15 m>s, which is increasing at a constant rate of 2 m>s2, 

while car C travels with a speed of 15 m>s, which is increasing 

at a constant rate of 3 m>s2. Determine the velocity and 

acceleration of car B with respect to car C.

 250 m

15 m/s
2 m/s2

200 m

A

B

15 m/s
3 m/s2

25 m/s

2 m/s2

C

45�

Prob. 16–149

16–150. The two-link mechanism serves to amplify angular 

motion. Link AB has a pin at B which is confined to move 

within the slot of link CD. If at the instant shown, AB (input) 

has an angular velocity of vAB = 2.5 rad>s, determine the 

angular velocity of CD (output) at this instant.

vAB � 2.5 rad/s

45�

150 mm

C

A

B

D

30�

Prob. 16–150

16–151. The disk rotates with the angular motion shown. 

Determine the angular velocity and angular acceleration of 

the slotted link AC at this instant. The peg at B is fixed to 

the disk.

A

C

v � 6 rad/s
a � 10 rad/s2

30�

30�

0.3 m

0.75 m

B

Prob. 16–151

*16–152. The Geneva mechanism is used in a packaging 

system to convert constant angular motion into intermittent 

angular motion. The star wheel A makes one sixth of a 

revolution for each full revolution of the driving wheel B 

and the attached guide C. To do this, pin P, which is attached 

to B, slides into one of the radial slots of A, thereby turning 

wheel A, and then exits the slot. If B has a constant angular 

velocity of vB = 4 rad>s, determine VA and AA of wheel A 

at the instant shown.

A

vB

B
C

P

4 in.

u � 30�

       � 4 rad/s

Prob. 16–152
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C16–4. If the tires do not slip on the pavement, determine 

the points on the tire that have a maximum and minimum 

speed and the points that have a maximum and minimum 

acceleration. Use appropriate numerical values for the car’s 

speed and tire size to explain your result.

A

B

C

u

Prob. C16–3 (© R.C. Hibbeler) 

A

BC

D
E

u

Prob. C16–2 (© R.C. Hibbeler) 

C16–2. The crank AB turns counterclockwise at a 

constant rate V causing the connecting arm CD and 

rocking beam DE to move. Draw a sketch showing the 

location of the IC for the connecting arm when 

u = 0�, 90�, 180�, and 270�. Also, how was the curvature of 

the head at E determined, and why is it curved in this way?

A

Prob. C16–1 (© R.C. Hibbeler) 

C16–3. The bi-fold hangar door is opened by cables that 

move upward at a constant speed of 0.5 m>s. Determine the 

angular velocity of BC and the angular velocity of AB  

when u = 45�. Panel BC is pinned at C and has a height 

which is the same as the height of BA. Use appropriate 

numerical values to explain your result.

C16–1. An electric motor turns the tire at A at a constant 

angular velocity, and friction then causes the tire to roll 

without slipping on the inside rim of the Ferris wheel. Using 

appropriate numerical values, determine the magnitude of 

the velocity and acceleration of passengers in one of the 

baskets. Do passengers in the other baskets experience this 

same motion? Explain.

CONCEPTUAL PROBLEMS

Prob. C16–4 (© R.C. Hibbeler) 
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General Plane Motion

When a body undergoes general plane motion, it 

simultaneously translates and rotates. There are several 

methods for analyzing this motion.

Absolute Motion Analysis
If the motion of a point on a body or the angular motion of a 

line is known, then it may be possible to relate this motion to 

that of another point or line using an absolute motion 

analysis. To do so, linear position coordinates s or angular 

position coordinates u are established (measured from a 

fixed point or line). These position coordinates are then 

related using the geometry of the body. The time derivative 

of this equation gives the relationship between the velocities 

and/or the angular velocities. A second time derivative 

relates the accelerations and/or the angular accelerations. 

Rigid-Body Planar Motion

A rigid body undergoes three types of planar motion: 

translation, rotation about a fixed axis, and general plane 

motion. 

CHAPTER REVIEW

Path of rectilinear translation

Rotation about a fixed axis

General plane motion

Path of curvilinear translation

Translation

When a body has rectilinear translation, all the particles of 

the body travel along parallel straight-line paths. If the paths 

have the same radius of curvature, then curvilinear translation 

occurs. Provided we know the motion of one of the particles, 

then the motion of all of the others is also known. 

Rotation about a Fixed Axis

For this type of motion, all of the particles move along 

circular paths. Here, all line segments in the body undergo 

the same angular displacement, angular velocity, and 

angular acceleration.

Once the angular motion of the body is known, then the 

velocity of any particle a distance r from the axis can be 

obtained.

The acceleration of any particle has two components. The 

tangential component accounts for the change in the 

magnitude of the velocity, and the normal component 

accounts for the change in the velocity’s direction. 

 v = du>dt   v = v0 + act

 a = dv>dt or  u = u0 + v0t + 1
2 act

2

 a du = v dv   v2 = v0
2 + 2ac(u - u0)

                                                             Constant ac

 v = vr  at = ar,   an = v2r
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 vB = vA + � * rB>A + (vB>A)xyz

 aB = aA + �
#

* rB>A + � * (� * rB>A) + 2� * (vB>A)xyz + (aB>A)xyz

Relative-Motion using Translating Axes
General plane motion can also be analyzed using 

a relative-motion analysis between two points A 

and B located on the body. This method considers 

the motion in parts: first a translation of the 

selected base point A, then a relative “rotation” of 

the body about point A, which is measured from a 

translating axis. Since the relative motion is 

viewed as circular motion about the base point, 

point B will have a velocity vB>A that is tangent to 

the circle. It also has two components of 

acceleration, (aB>A)t and (aB>A)n . It is also important 

to realize that aA and aB will have tangential and 

normal components if these points move along 

curved paths.

Instantaneous Center of Zero Velocity
If the base point A is selected as having zero 

velocity, then the relative velocity equation 

becomes vB = V * rB>A . In this case, motion 

appears as if the body rotates about an 

instantaneous axis passing through A.

The instantaneous center of rotation (IC) can be 

established provided the directions of the 

velocities of any two points on the body are 

known, or the velocity of a point and the angular 

velocity are known. Since a radial line r will always 

be perpendicular to each velocity, then the IC is at 

the point of intersection of these two radial lines. 

Its measured location is determined from the 

geometry of the body. Once it is established, then 

the velocity of any point P on the body can be 

determined from v = vr, where r extends from 

the IC to point P.

B

A rA/IC

rP/IC

rB/IC

vB

vA vP
IC

P vIC � 0
V

Relative Motion using Rotating Axes
Problems that involve connected members that 

slide relative to one another or points not 

located on the same body can be analyzed 

using a relative-motion analysis referenced 

from a rotating frame. This gives rise to the 

term 2� * (vB>A)xyz that is called the Coriolis 

acceleration.

 vB = vA + V * rB>A
 aB = aA + A * rB>A - v2  rB>A
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R16–1. The hoisting gear A has an initial angular velocity 

of 60 rad>s and a constant deceleration of 1 rad>s2. 

Determine the velocity and deceleration of the block which 

is being hoisted by the hub on gear B when t = 3 s.

B

A
2 ft

1 ft

0.5 ft

Prob. R16–1

R16–2. Starting at (vA)0 = 3 rad>s, when u = 0, s = 0,

pulley A is given an angular acceleration a = (0.6u) rad>s2, 

where u is in radians. Determine the speed of block B when 

it has risen s = 0.5 m. The pulley has an inner hub D which 

is fixed to C and turns with it.

A
75 mm50 mm

s

B

150 mm

D C

Prob. R16–2

R16–3. The board rests on the surface of two drums. At 

the instant shown, it has an acceleration of 0.5 m>s2 to the 

right, while at the same instant points on the outer rim of 

each drum have an acceleration with a magnitude of 3 m>s2. 

If the board does not slip on the drums, determine its speed 

due to the motion.

250 mm 250 mm

a � 0.5 m/s2

Prob. R16–3

R16–4. If bar AB has an angular velocity vAB = 6 rad>s, 
determine the velocity of the slider block C at the instant 

shown.

30�

500 mm200 mm

vAB � 6 rad/s

u � 45�A

B

C

Prob. R16–4

REVIEW PROBLEMS
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R16–5. The center of the pulley is being lifted vertically 

with an acceleration of 4 m>s2 at the instant it has a velocity 

of 2 m>s. If the cable does not slip on the pulley’s surface, 

determine the accelerations of the cylinder B and point C 

on the pulley.

aA = 4 m/s2

vA = 2 m/s

80 mm

C

B

D
A

Prob. R16–5

R16–6. At the instant shown, link AB has an angular 

velocity vAB = 2 rad>s and an angular acceleration aAB =  

6 rad>s2. Determine the acceleration of the pin at C and the 

angular acceleration of link CB at this instant, when u = 60°.

vAB � 2 rad/s
aAB � 6 rad/s2

300 mm

500 mm

175 mm

BA

DC

u

Prob. R16–6

R16–7. The disk is moving to the left such that it has an 

angular acceleration a = 8 rad>s2 and angular velocity 

v = 3 rad>s at the instant shown. If it does not slip at A, 

determine the acceleration of point B.

C

A
B

v

a

0.5 m

30�

 � 3 rad/s
 � 8 rad/s2

Prob. R16–7

R16–8. At the given instant member AB has the angular 

motions shown. Determine the velocity and acceleration of 

the slider block C at this instant.

5 in.

5 in.

7 in.

3 rad/s
2 rad/s2

A

C

B

5
3

4

Prob. R16–8
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Tractors and other heavy equipment can be subjected to severe loadings due 
to dynamic loadings as they accelerate. In this chapter we will show how to 

determine these loadings for planar motion.

Chapter 17

(© Surasaki/Fotolia)



Planar Kinetics of a 
Rigid Body: Force 
and Acceleration

CHAPTER OBJECTIVES

■ To introduce the methods used to determine the mass moment 
of inertia of a body.

■ To develop the planar kinetic equations of motion for a symmetric 
rigid body.

■ To discuss applications of these equations to bodies undergoing 
translation, rotation about a fixed axis, and general plane motion.

17.1 Mass Moment of Inertia

Since a body has a definite size and shape, an applied nonconcurrent force 

system can cause the body to both translate and rotate. The translational 

aspects of the motion were studied in Chapter 13 and are governed by the 

equation F = ma. It will be shown in the next section that the rotational 

aspects, caused by a moment M, are governed by an equation of the form 

M = IA. The symbol I in this equation is termed the mass moment of 

inertia. By comparison, the moment of inertia is a measure of the resistance 

of a body to angular acceleration (M = IA) in the same way that mass is 

a measure of the body’s resistance to acceleration (F = ma).
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The flywheel on the engine of this tractor has a large moment of inertia 

about its axis of rotation. Once it is set into motion, it will be difficult to 

stop, and this in turn will prevent the engine from stalling and instead will 

allow it to maintain a constant power.

We define the moment of inertia as the integral of the “second moment” 

about an axis of all the elements of mass dm which compose the body.*  

For example, the body’s moment of inertia about the z axis in Fig. 17–1 is

 I = Lm
r 2 dm  (17–1)

Here the “moment arm” r is the perpendicular distance from the z axis to 

the arbitrary element dm. Since the formulation involves r, the value of I 

is different for each axis about which it is computed. In the study of planar 

kinetics, the axis chosen for analysis generally passes through the body’s 

mass center G and is always perpendicular to the plane of motion. The 

moment of inertia about this axis will be denoted as IG . Since r is squared 

in Eq. 17–1, the mass moment of inertia is always a positive quantity. 

Common units used for its measurement are kg # m2 or slug # ft2.

If the body consists of material having a variable density, r = r (x,y,z), 

the elemental mass dm of the body can be expressed in terms of its 

density and volume as dm = r dV. Substituting dm into Eq. 17–1, the 

body’s moment of inertia is then computed using volume elements for 

integration; i.e.,

 I = LV
r2r dV  (17–2)

r

dm

z

Fig. 17–1 

*Another property of the body, which measures the symmetry of the body’s mass with 

respect to a coordinate system, is the product of inertia. This property applies to the three-

dimensional motion of a body and will be discussed in Chapter 21.

(© R.C. Hibbeler)
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In the special case of r being a constant, this term may be factored out of 

the integral, and the integration is then purely a function of geometry,

 I = rLV
r2 dV  (17–3)

When the volume element chosen for integration has infinitesimal 

dimensions in all three directions, Fig. 17–2a, the moment of inertia of the 

body must be determined using “triple integration.” The integration 

process can, however, be simplified to a single integration provided the 

chosen volume element has a differential size or thickness in only one 
direction. Shell or disk elements are often used for this purpose.

Procedure for Analysis

To obtain the moment of inertia by integration, we will consider 

only symmetric bodies having volumes which are generated by 

revolving a curve about an axis. An example of such a body is shown 

in Fig. 17–2a. Two types of differential elements can be chosen.

Shell Element.

  If a shell element having a height z, radius r = y, and thickness dy 

is chosen for integration, Fig. 17–2b, then the volume is 

dV = (2py)(z)dy.

  This element may be used in Eq. 17–2 or 17–3 for determining the 

moment of inertia Iz of the body about the z axis, since the entire 
element, due to its “thinness,” lies at the same perpendicular 

distance r = y from the z axis (see Example 17.1).

Disk Element.

  If a disk element having a radius y and a thickness dz is chosen 

for integration, Fig. 17–2c, then the volume is dV = (py2)dz.

  This element is finite in the radial direction, and consequently its 

parts do not all lie at the same radial distance r from the z axis. As 

a result, Eq. 17–2 or 17–3 cannot be used to determine Iz directly. 

Instead, to perform the integration it is first necessary to 

determine the moment of inertia of the element about the z axis 

and then integrate this result (see Example 17.2).

z

y

x

dm � r dV

x
y

z

(a)

(b)

z

y

x

y dy

z

(c)

z

y

x

z

dz

y

Fig. 17–2 
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Determine the moment of inertia of the cylinder shown in Fig. 17–3a 

about the z axis. The density of the material, r, is constant.

EXAMPLE   17.1

z

y

x

O

(a)

R

2
h

2
h

(b)

z

y

x

O

r dr

2
h

2
h

Fig. 17–3 

SOLUTION
Shell Element. This problem can be solved using the shell element in 

Fig. 17–3b and a single integration. The volume of the element is 

dV = (2pr)(h) dr, so that its mass is dm = rdV = r(2phr dr). Since the 

entire element lies at the same distance r from the z axis, the moment 

of inertia of the element is

dIz = r2dm = r2phr3 dr

Integrating over the entire region of the cylinder yields

Iz = Lm
r2 dm = r2phL

R

0

r3 dr =
rp

2
 R4h

The mass of the cylinder is

m = Lm
dm = r2phL

R

0

r dr = rphR2

so that

 Iz =
1

2
 mR2 Ans.
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If the density of the material is 5 slug>ft3, determine the moment of 

inertia of the solid in Fig. 17–4a about the y axis.

EXAMPLE   17.2

y

x

1 ft

1 ft

y2 � x

(a)

y

x

1 ft
y

dy

(x,y)

x
1 ft

(b)

Fig. 17–4 

SOLUTION
Disk Element. The moment of inertia will be found using a disk 
element, as shown in Fig. 17–4b. Here the element intersects the curve 

at the arbitrary point (x,y) and has a mass

dm = r dV = r(px2) dy

Although all portions of the element are not located at the same 

distance from the y axis, it is still possible to determine the moment of 

inertia dIy of the element about the y axis. In the preceding example it 

was shown that the moment of inertia of a cylinder about its 

longitudinal axis is I = 1
2 mR2, where m and R are the mass and radius 

of the cylinder. Since the height is not involved in this formula, the 

disk itself can be thought of as a cylinder. Thus, for the disk element in 

Fig. 17–4b, we have

dIy = 1
2(dm)x2 = 1

2[r(px2) dy]x2

Substituting x = y2, r = 5 slug>ft3, and integrating with respect to y, 

from y = 0 to y = 1 ft, yields the moment of inertia for the entire solid.

Iy =
p(5 slug>ft3)

2 L
1 ft

0

x4 dy =
p(5)

2 L
1 ft

0

y8 dy = 0.873 slug # ft2 Ans.



414  CHAPTER 17  PLANAR KINET ICS OF A RIG ID BODY: FORCE AND ACCELERAT ION

17

y¿

x¿

z z¿

y¿r¿

x¿d

r

dm

A G

Fig. 17–5 

Parallel-Axis Theorem. If the moment of inertia of the body 

about an axis passing through the body’s mass center is known, then the 

moment of inertia about any other parallel axis can be determined by 

using the parallel-axis theorem. This theorem can be derived by considering 

the body shown in Fig. 17–5. Here the z� axis passes through the mass 

center G, whereas the corresponding parallel z axis lies at a constant 

distance d away. Selecting the differential element of mass dm, which is 

located at point (x�, y�), and using the Pythagorean theorem, 

r2 = (d + x�)2 + y�2, we can express the moment of inertia of the body 

about the z axis as

 I = Lm
r2 dm = Lm

[(d + x�)2 + y�2] dm

 = Lm
(x�2 + y�2) dm + 2dLm

x� dm + d2

Lm
dm

Since r�2 = x�2 + y�2, the first integral represents IG . The second 

integral equals zero, since the z� axis passes through the body’s mass 

center, i.e., 1x�dm = x�m = 0 since x� = 0. Finally, the third integral 
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represents the total mass m of the body. Hence, the moment of inertia 

about the z axis can be written as

 I = IG + md2  (17–4)

where

 IG =  moment of inertia about the z� axis passing through the mass 

center G
 m = mass of the body

 d = perpendicular distance between the parallel z and z� axes

Radius of Gyration. Occasionally, the moment of inertia of a body 

about a specified axis is reported in handbooks using the radius of 
gyration, k. This is a geometrical property which has units of length. When 

it and the body’s mass m are known, the body’s moment of inertia is 

determined from the equation

 I = mk2 or k = A
I
m

 (17–5)

Note the similarity between the definition of k in this formula and r in the 

equation dI = r2 dm, which defines the moment of inertia of an elemental 

mass dm of the body about an axis.

Composite Bodies. If a body consists of a number of simple 

shapes such as disks, spheres, and rods, the moment of inertia of the body 

about any axis can be determined by adding algebraically the moments 

of inertia of all the composite shapes computed about the axis. Algebraic 

addition is necessary since a composite part must be considered as a 

negative quantity if it has already been counted as a piece of another 

part—for example, a “hole” subtracted from a solid plate. The parallel-

axis theorem is needed for the calculations if the center of mass of each 

composite part does not lie on the axis. For the calculation, then, 

I = �(IG + md2). Here IG for each of the composite parts is determined 

by integration, or for simple shapes, such as rods and disks, it can be 

found from a table, such as the one given on the inside back cover of 

this book.
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If the plate shown in Fig. 17–6a has a density of 8000 kg>m3 and a 

thickness of 10 mm, determine its moment of inertia about an axis 

directed perpendicular to the page and passing through point O.

EXAMPLE   17.3

SOLUTION
The plate consists of two composite parts, the 250-mm-radius disk 

minus a 125-mm-radius disk, Fig. 17–6b. The moment of inertia about O 

can be determined by computing the moment of inertia of each of 

these parts about O and then adding the results algebraically. The 

calculations are performed by using the parallel-axis theorem in 

conjunction with the data listed in the table on the inside back cover.

Disk. The moment of inertia of a disk about the centroidal axis 

perpendicular to the plane of the disk is IG = 1
2 mr2. The mass center of 

the disk is located at a distance of 0.25 m from point O. Thus,

 md = rdVd = 8000 kg>m3 [p(0.25 m)2(0.01 m)] = 15.71 kg

 (Id)O = 1
2 mdrd

2 + mdd
2

 =
1

2
 (15.71 kg)(0.25 m)2 + (15.71 kg)(0.25 m)2

 = 1.473 kg # m2

Hole. For the 125-mm-radius disk (hole), we have

 mh = rhVh = 8000 kg>m3 [p(0.125 m)2(0.01 m)] = 3.927 kg

 (Ih)O = 1
2 mhrh

2 + mhd
2

 =
1

2
 (3.927 kg)(0.125 m)2 + (3.927 kg)(0.25 m)2

 = 0.276 kg # m2

The moment of inertia of the plate about point O is therefore

 IO = (Id)O - (Ih)O

 = 1.473 kg # m2 - 0.276 kg # m2

  = 1.20 kg # m2  Ans.

O

250 mm
125 mm

G

(a)

Thickness 10 mm

250 mm

G G– 125 mm

(b)

Fig. 17–6 
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The pendulum in Fig. 17–7 is suspended from the pin at O and consists 

of two thin rods. Rod OA weighs 10 lb, and BC weighs 8 lb. Determine 

the moment of inertia of the pendulum about an axis passing through 

(a) point O, and (b) the mass center G of the pendulum.

SOLUTION
Part (a). Using the table on the inside back cover, the moment of 

inertia of rod OA about an axis perpendicular to the page and passing 

through point O of the rod is IO = 1
3 ml2. Hence,

(IOA)O =
1

3
 ml2 =

1

3
 a 10 lb

32.2 ft>s2
b (2 ft)2 = 0.414 slug # ft2

This same value can be obtained using IG = 1
12 ml2 and the parallel-axis 

theorem.

 (IOA)O =
1

12
 ml2 + md2 =

1

12
 a 10 lb

32.2 ft>s2
b (2 ft)2 + a 10 lb

32.2 ft>s2
b (1 ft)2

 = 0.414 slug # ft2

For rod BC we have

 (IBC)O =
1

12
 ml2 + md2 =

1

12
 a 8 lb

32.2 ft>s2
b (1.5 ft)2 + a 8 lb

32.2 ft>s2
b (2 ft)2

 = 1.040 slug # ft2

The moment of inertia of the pendulum about O is therefore

 IO = 0.414 + 1.040 = 1.454 = 1.45 slug # ft2 Ans.

Part (b). The mass center G will be located relative to point O. 

Assuming this distance to be y, Fig. 17–7, and using the formula for 

determining the mass center, we have

y =
� y�m

�m
=

1(10>32.2) + 2(8>32.2)

(10>32.2) + (8>32.2)
= 1.444 ft

The moment of inertia IG may be found in the same manner as IO , 

which requires successive applications of the parallel-axis theorem to 

transfer the moments of inertia of rods OA and BC to G. A more direct 

solution, however, involves using the result for IO , i.e.,

IO = IG + md2;  1.454 slug # ft2 = IG + a 18 lb

32.2 ft>s2
b (1.444 ft)2

 IG = 0.288 slug # ft2 Ans.

EXAMPLE   17.4

2 ft

y–

O

G

A
B C

0.75 ft0.75 ft

Fig. 17–7 
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17–1. Determine the moment of inertia Iy for the slender 

rod. The rod’s density r and cross-sectional area A are 

constant. Express the result in terms of the rod’s total mass m.

x

y

z

A

l

Prob. 17–1

17–2. The solid cylinder has an outer radius R, height h, 

and is made from a material having a density that varies 

from its center as r = k + ar 2, where k and a are constants. 

Determine the mass of the cylinder and its moment of 

inertia about the z axis.

R

h

z

Prob. 17–2

17–3. Determine the moment of inertia of the thin ring 

about the z axis. The ring has a mass m.

x

y

R

Prob. 17–3

*17–4. The paraboloid is formed by revolving the shaded 

area around the x axis. Determine the radius of gyration kx. 

The density of the material is r = 5 Mg>m3.

y

x

y2 � 50x

200 mm

100 mm

Prob. 17–4

PROBLEMS
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17–5. Determine the radius of gyration kx of the body. The 

specific weight of the material is g = 380 lb>ft3.

y

x

2 in.

y3 � x

8 in.

Prob. 17–5

17–6. The sphere is formed by revolving the shaded area 

around the x axis. Determine the moment of inertia Ix and 

express the result in terms of the total mass m of the sphere. 

The material has a constant density r.

x

y

x2 � y2 � r2

Prob. 17–6

17–7. The frustum is formed by rotating the shaded area 

around the x axis. Determine the moment of inertia Ix and 

express the result in terms of the total mass m of the 

frustum. The frustum has a constant density r.

y

x

2b

b–a x � by �

a

z

b

Prob. 17–7

*17–8. The hemisphere is formed by rotating the shaded 

area around the y axis. Determine the moment of inertia Iy 

and express the result in terms of the total mass m of the 

hemisphere. The material has a constant density r.

x2 � y2 � r2

y

x

Prob. 17–8
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17–9. Determine the moment of inertia of the 

homogeneous triangular prism with respect to the y axis. 

Express the result in terms of the mass m of the prism. Hint: 
For integration, use thin plate elements parallel to the  

x–y plane and having a thickness dz.

x

y

z

�h––a (x � a)z �

h

ab

Prob. 17–9

17–10. The pendulum consists of a 4-kg circular plate and 

a 2-kg slender rod. Determine the radius of gyration of the 

pendulum about an axis perpendicular to the page and 

passing through point O.

1 m

O

2 m

Prob. 17–10

17–11. The assembly is made of the slender rods that have 

a mass per unit length of 3 kg>m. Determine the mass 

moment of inertia of the assembly about an axis 

perpendicular to the page and passing through point O.

O

 0.8 m

 0.4 m

0.4 m

Prob. 17–11

*17–12. Determine the moment of inertia of the solid 

steel assembly about the x axis. Steel has a specific weight of 

gst = 490 lb>ft3.

2 ft 3 ft

0.5 ft

0.25 ft

x

Prob. 17–12

17–13. The wheel consists of a thin ring having a mass of 

10 kg and four spokes made from slender rods and each 

having a mass of 2 kg. Determine the wheel’s moment of 

inertia about an axis perpendicular to the page and passing 

through point A.

A

500 mm

Prob. 17–13
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17–14. If the large ring, small ring and each of the spokes 

weigh 100 lb, 15 lb, and 20 lb, respectively, determine the 

mass moment of inertia of the wheel about an axis 

perpendicular to the page and passing through point A.

A

O

1 ft

4 ft

Prob. 17–14

17–15. Determine the moment of inertia about an axis 

perpendicular to the page and passing through the pin at O. 

The thin plate has a hole in its center. Its thickness is 50 mm, 

and the material has a density r = 50 kg>m3.

1.40 m 1.40 m

150 mm

O

Prob. 17–15

*17–16. Determine the mass moment of inertia of the thin 

plate about an axis perpendicular to the page and passing 

through point O. The material has a mass per unit area of 

20 kg>m2.

200 mm200 mm

200 mm

O

Prob. 17–16

17–17. Determine the location y of the center of mass G of 

the assembly and then calculate the moment of inertia about 

an axis perpendicular to the page and passing through G.  

The block has a mass of 3 kg and the semicylinder has a mass 

of 5 kg.

17–18. Determine the moment of inertia of the assembly 

about an axis perpendicular to the page and passing through 

point O. The block has a mass of 3 kg, and the semicylinder 

has a mass of 5 kg.

G

400 mm

300 mm

200 mm

O

y–

Probs. 17–17/18
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17–19. Determine the moment of inertia of the wheel 

about an axis which is perpendicular to the page and passes 

through the center of mass G. The material has a specific 

weight g = 90 lb>ft3.
*17–20. Determine the moment of inertia of the wheel 

about an axis which is perpendicular to the page and passes 

through point O. The material has a specific weight 

g = 90 lb>ft3.

G

O
0.5 ft

1 ft

0.25 ft

0.25 ft

1 ft

2 ft

Probs. 17–19/20

17–21. The pendulum consists of the 3-kg slender rod and 

the 5-kg thin plate. Determine the location y of the center 

of mass G of the pendulum; then calculate the moment of 

inertia of the pendulum about an axis perpendicular to the 

page and passing through G.

G

2 m

1 m

0.5 m

y

O

Prob. 17–21

17–22. Determine the moment of inertia of the overhung 

crank about the x axis. The material is steel having a density 

of r = 7.85 Mg>m3.

90 mm

50 mm

20 mm

20 mm

20 mm

x

x¿

50 mm
30 mm

30 mm

30 mm

180 mm

Prob. 17–22

17–23. Determine the moment of inertia of the overhung 

crank about the x � axis. The material is steel having a density 

of r = 7.85 Mg>m3.

90 mm

50 mm

20 mm

20 mm

20 mm

x

x¿

50 mm
30 mm

30 mm

30 mm

180 mm

Prob. 17–23
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17.2 Planar Kinetic Equations of Motion

In the following analysis we will limit our study of planar kinetics to rigid 

bodies which, along with their loadings, are considered to be symmetrical 
with respect to a fixed reference plane.* Since the motion of the body can 

be viewed within the reference plane, all the forces (and couple moments) 

acting on the body can then be projected onto the plane. An example of 

an arbitrary body of this type is shown in Fig. 17–8a. Here the inertial 
frame of reference x, y, z has its origin coincident with the arbitrary point P 

in the body. By definition, these axes do not rotate and are either fixed or 
translate with constant velocity.

y

x

G

W

P

F1

M1

M2

F4

F3

F2

(a)

A

V

Fig. 17–8 

Equation of Translational Motion. The external forces 

acting on the body in Fig. 17–8a represent the effect of gravitational, 

electrical, magnetic, or contact forces between adjacent bodies. Since 

this force system has been considered previously in Sec. 13.3 for the 

analysis of a system of particles, the resulting Eq. 13–6 can be used 

here, in which case

�F = maG

This equation is referred to as the translational equation of motion for the 

mass center of a rigid body. It states that the sum of all the external forces 
acting on the body is equal to the body’s mass times the acceleration of its 
mass center G.

For motion of the body in the x–y plane, the translational equation of 

motion may be written in the form of two independent scalar equations, 

namely,

 �Fx = m(aG)x

 �Fy = m(aG)y

*By doing this, the rotational equation of motion reduces to a rather simplified form. 

The more general case of body shape and loading is considered in Chapter 21.
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Equation of Rotational Motion. We will now determine the 

effects caused by the moments of the external force system computed 

about an axis perpendicular to the plane of motion (the z axis) and 

passing through point P. As shown on the free-body diagram of the ith 

particle, Fig. 17–8b, Fi represents the resultant external force acting on the 

particle, and fi is the resultant of the internal forces caused by interactions 

with adjacent particles. If the particle has a mass mi and its acceleration is ai , 

then its kinetic diagram is shown in Fig. 17–8c. Summing moments about 

point P, we require

r * Fi + r * fi = r * mi ai

or

(MP)i = r * mi ai

The moments about P can also be expressed in terms of the acceleration 

of point P, Fig. 17–8d. If the body has an angular acceleration A and angular 

velocity V, then using Eq. 16–18 we have

 (MP)i = mi r * (aP + A * r - v2r)

 = mi[r * aP + r * (A * r) - v2(r * r)]

The last term is zero, since r * r = 0. Expressing the vectors with 

Cartesian components and carrying out the cross-product operations 

yields

 (MP)i k = mi5(xi + yj) * [(aP)x i + (aP)y j]

  + (xi + yj) * [ak * (xi + yj)]6
 (MP)i k = mi[-y(aP)x + x(aP)y + ax2 + ay2]k

 a(MP)i = mi[-y(aP)x + x(aP)y + ar2]

Letting mi S dm and integrating with respect to the entire mass m of the 

body, we obtain the resultant moment equation

a�MP = - aLm
y dmb (aP)x + aLm

x dmb (aP)y + aLm
r2dmba

Here �MP represents only the moment of the external forces acting on the 

body about point P. The resultant moment of the internal forces is zero, 

since for the entire body these forces occur in equal and opposite collinear 

pairs and thus the moment of each pair of forces about P cancels. The 

integrals in the first and second terms on the right are used to locate the 

body’s center of mass G with respect to P, since ym = 1y dm and 

xm = 1x dm, Fig. 17–8d. Also, the last integral represents the body’s 

moment of inertia about the z axis, i.e., IP = 1r2dm. Thus,

 a�MP = -ym(aP)x + xm(aP)y + IPa (17–6)

y

xP

(b)

Particle free-body diagram

i
fi

Fi
x

yr

y

xP

(c)

Particle kinetic diagram

i
miaix

yr

=
y

xP

(d)

_
x

_
r

aP

G
_
y

aG

A

V

Fig. 17–8 (cont.) 
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It is possible to reduce this equation to a simpler form if point P coincides 

with the mass center G for the body. If this is the case, then x = y = 0, 

and therefore* 

 �MG = IGa  (17–7)

This rotational equation of motion states that the sum of the moments of 
all the external forces about the body’s mass center G is equal to the 
product of the moment of inertia of the body about an axis passing through G 
and the body’s angular acceleration.

Equation 17–6 can also be rewritten in terms of the x and y components 

of aG and the body’s moment of inertia IG . If point G is located at (x, y), 

Fig. 17–8d, then by the parallel-axis theorem, IP = IG + m(x2 + y2). 

Substituting into Eq. 17–6 and rearranging terms, we get

 a�MP = ym[-(aP)x + ya] + xm[(aP)y + xa] + IGa (17–8)

From the kinematic diagram of Fig. 17–8d, aP can be expressed in terms 

of aG as

aG = aP + A * r - v2r

(aG)x i + (aG)y j = (aP)x i + (aP)y j + ak * (x i + y j) - v2(x i + y j)

Carrying out the cross product and equating the respective i and j 
components yields the two scalar equations

 (aG)x = (aP)x - ya - xv2

 (aG)y = (aP)y + xa - yv2

From these equations, [-(aP)x + ya] = [-(aG)x - xv2]  and 

[(aP)y + xa] = [(aG)y + yv2]. Substituting these results into Eq. 17–8 and 

simplifying gives

 a�MP = -ym(aG)x + xm(aG)y + IGa (17–9)

This important result indicates that when moments of the external forces 
shown on the free-body diagram are summed about point P, Fig. 17–8e, 
they are equivalent to the sum of the “kinetic moments” of the components 
of maG about P plus the “kinetic moment” of IG A, Fig. 17–8f. In other 

words, when the “kinetic moments,” �(mk)P , are computed, Fig.  17–8f, 
the vectors m(aG)x and m(aG)y are treated as sliding vectors; that is, they 

can act at any point along their line of action. In a similar manner, IG A 

can be treated as a free vector and can therefore act at any point. It is 

important to keep in mind, however, that maG and IG A are not the same 

as a force or a couple moment. Instead, they are caused by the external 

effects of forces and couple moments acting on the body. With this in 

mind we can therefore write Eq. 17–9 in a more general form as

 �MP = �(mk)P  (17–10)

*It also reduces to this same simple form �MP = IPa if point P is a fixed point (see 

Eq. 17–16) or the acceleration of point P is directed along the line PG.

F1
F4

F3

F2

G

W

y

xP

(e)

Free-body diagram

M1

M2

y

xP

(f)

Kinetic diagram

m(aG)x_
y

G

m(aG)y

IG

_
x

A

Fig. 17–8 (cont.) 
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General Application of the Equations of Motion. To 

summarize this analysis, three independent scalar equations can be written 

to describe the general plane motion of a symmetrical rigid body.

 �Fx = m(aG)x

 �Fy = m(aG)y

 �MG = IGa

or   �MP = �(�k)P (17–11)

When applying these equations, one should always draw a free-body 

diagram, Fig. 17–8e, in order to account for the terms involved in �Fx , 

�Fy , �MG , or �MP . In some problems it may also be helpful to draw the 

kinetic diagram for the body, Fig. 17–8f. This diagram graphically accounts 

for the terms m(aG)x , m(aG)y , and IG A. It is especially convenient when 

used to determine the components of maG and the moment of these 

components in �(mk)P .*

17.3 Equations of Motion: Translation

When the rigid body in Fig. 17–9a undergoes a translation, all the particles 

of the body have the same acceleration.  Furthermore, A = 0, in which 

case the rotational equation of motion applied at point G reduces to a 

simplified form, namely, �MG = 0. Application of this and the force 

equations of motion will now be discussed for each of the two types of 

translation.

Rectilinear Translation. When a body is subjected to rectilinear 
translation, all the particles of the body (slab) travel along parallel straight-

line paths. The free-body and kinetic diagrams are shown in Fig.  17–9b. 

Since IG A = 0, only maG is shown on the kinetic diagram. Hence, the 

equations of motion which apply in this case become

 

�Fx = m(aG)x

�Fy = m(aG)y

�MG = 0   

 (17–12)

F1
F4

F3

F2

G

W

y

xP

(e)

Free-body diagram

M1

M2

y

xP

(f)

Kinetic diagram

m(aG)x_
y

G

m(aG)y

IG

_
x

A

Fig. 17–8 (cont.) 

*For this reason, the kinetic diagram will be used in the solution of an example problem 

whenever �MP = �(�k)P is applied.

G

M2

M1

F1

F4

F2

F3

(a)

Fig. 17–9 
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It is also possible to sum moments about other points on or off the body, 

in which case the moment of maG must be taken into account. For example, 

if point A is chosen, which lies at a perpendicular distance d from the line 

of action of maG , the following moment equation applies: 

a+ �MA = �(�k)A;    �MA = (maG)d

Here the sum of moments of the external forces and couple moments 

about A (�MA , free-body diagram) equals the moment of maG about A 

(�(�k)A, kinetic diagram).

Curvilinear Translation. When a rigid body is subjected to curvilinear 
translation, all the particles of the body have the same accelerations as 

they travel along curved paths as noted in Sec.16.1. For analysis, it is often 

convenient to use an inertial coordinate system having an origin which 

coincides with the body’s mass center at the instant considered, and axes 

which are oriented in the normal and tangential directions to the path of 

motion, Fig. 17–9c. The three scalar equations of motion are then

 
�Fn = m(aG)n

�Ft = m(aG)t

�MG = 0  

 (17–13)

If moments are summed about the arbitrary point B, Fig. 17–9c, then it 

is necessary to account for the moments, �(�k)B , of the two components 

m(aG)n and m(aG)t about this point. From the kinetic diagram, h and e 

represent the perpendicular distances (or “moment arms”) from B to the 

lines of action of the components. The required moment equation 

therefore becomes

a+ �MB = �(mk)B;    �MB = e[m(aG)t] - h[m(aG)n]

G
M2

M1

F1

F4

F2

F3

(b)

A

W

G

A

d maG
Rec

til
in

ea
r

Tra
nsla

tio
n

=

G
M2

M1

F1

F4

F2

F3

(c)

B

W

G

m(aG)t

Curvilinear

Translation

t

n

t

n

B

e

h

m(aG)n

=

Fig. 17–9 
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Procedure for Analysis

Kinetic problems involving rigid-body translation can be solved 

using the following procedure.

Free-Body Diagram.

  Establish the x, y or n, t inertial coordinate system and draw the 

free-body diagram in order to account for all the external forces 

and couple moments that act on the body.

  The direction and sense of the acceleration of the body’s mass 

center aG should be established.

  Identify the unknowns in the problem.

  If it is decided that the rotational equation of motion 

�MP = �(mk)P is to be used in the solution, then consider 

drawing the kinetic diagram, since it graphically accounts for the 

components m(aG)x , m(aG)y or m(aG)t , m(aG)n and is therefore 

convenient for “visualizing” the terms needed in the moment 

sum �(mk)P .

Equations of Motion.

  Apply the three equations of motion in accordance with the 

established sign convention.

  To simplify the analysis, the moment equation �MG = 0 can be 

replaced by the more general equation �MP = �(mk)P , where 

point P is usually located at the intersection of the lines of action 

of as many unknown forces as possible.

  If the body is in contact with a rough surface and slipping occurs, 

use the friction equation F = mkN. Remember, F always acts on 

the body so as to oppose the motion of the body relative to the 

surface it contacts.

Kinematics.

  Use kinematics to determine the velocity and position of the body.

  For rectilinear translation with variable acceleration

  aG = dvG>dt aGdsG = vGdvG

  For rectilinear translation with constant acceleration

   vG = (vG)0 + aGt vG
2 = (vG)0

2 + 2aG[sG - (sG)0]

   sG = (sG)0 + (vG)0t + 1
2 aGt2

  For curvilinear translation

  (aG)n = vG
2 >r

  (aG)t = dvG>dt  (aG)t dsG = vG dvG

The free-body and kinetic diagrams for 
this boat and trailer are drawn first in 
order to apply the equations of motion. 
Here the forces on the free-body diagram 
cause the effect shown on the kinetic 
diagram. If moments are summed about 
the mass center, G, then �MG = 0. 
However, if moments are summed about 
point B then c + �MB = maG(d).  
(© R.C. Hibbeler)

NA

maG

T

W

NB

G
d

G

B

B

A

=
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The car shown in Fig. 17–10a has a mass of 2 Mg and a center of mass 

at G. Determine the acceleration if the rear “driving” wheels are always 

slipping, whereas the front wheels are free to rotate. Neglect the mass 

of the wheels. The coefficient of kinetic friction between the wheels and 

the road is mk = 0.25.

SOLUTION I
Free-Body Diagram. As shown in Fig. 17–10b, the rear-wheel 

frictional force FB pushes the car forward, and since slipping occurs, 

FB = 0.25NB . The frictional forces acting on the front wheels are zero, 

since these wheels have negligible mass.*  There are three unknowns in 

the problem, NA , NB , and aG . Here we will sum moments about the mass 

center. The car (point G) accelerates to the left, i.e., in the negative x 

direction, Fig. 17–10b.

Equations of Motion.

S+ �Fx = m(aG)x; -0.25NB = -(2000 kg)aG (1)

+ c �Fy = m(aG)y; NA + NB - 2000(9.81) N = 0 (2)

a+ �MG = 0;  -NA(1.25 m) - 0.25NB(0.3 m) + NB(0.75 m) = 0 (3)

Solving,

  aG = 1.59 m>s2 d  Ans.

 NA = 6.88 kN

 NB = 12.7 kN

SOLUTION II
Free-Body and Kinetic Diagrams. If the “moment” equation is 

applied about point A, then the unknown NA will be eliminated from 

the equation. To “visualize” the moment of maG about A, we will include 

the kinetic diagram as part of the analysis, Fig. 17–10c.

Equation of Motion.

a+ �MA = �(mk)A; NB(2 m) - [2000(9.81) N](1.25 m) =

 (2000 kg)aG(0.3 m)

Solving this and Eq. 1 for aG leads to a simpler solution than that 

obtained from Eqs. 1 to 3.

EXAMPLE   17.5

*With negligible wheel mass, Ia = 0 and the frictional force at A required to turn 

the wheel is zero. If the wheels’ mass were included, then the solution would be more 

involved, since a general-plane-motion analysis of the wheels would have to be 

considered (see Sec. 17.5).

0.3 m

0.75 m1.25 m
B

(a)

A

G

G

0.75 m
1.25 m

(b)

2000 (9.81) N

0.3 m

NA NB

FB � 0.25 NB

y

x

aG

A

G

0.75 m1.25 m

(c)

2000 (9.81) N

A

NA NB

FB � 0.25 NB

G

0.3 mA

2000 aG

0.3 m

=

Fig. 17–10 
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The motorcycle shown in Fig. 17–11a has a mass of 125 kg and a center 

of mass at G1 , while the rider has a mass of 75 kg and a center of mass 

at G2 . Determine the minimum coefficient of static friction between 

the wheels and the pavement in order for the rider to do a “wheely,” 

i.e., lift the front wheel off the ground as shown in the photo. What 

acceleration is necessary to do this? Neglect the mass of the wheels 

and assume that the front wheel is free to roll.

EXAMPLE   17.6

0.3 m

0.6 m

AB
0.4 m 0.4 m 0.7 m

G2

(a)

G1

(b)

AB
0.4 m 0.4 m

0.7 m

0.3 m

0.6 m

75 kg aG

NB

FB

735.75 N
1226.25 N

B

NA � 0

125 kg aG

=

Fig. 17–11 

SOLUTION
Free-Body and Kinetic Diagrams. In this problem we will consider 

both the motorcycle and the rider as a single system. It is possible first to 

determine the location of the center of mass for this “system” by using 

the equations x = � x�m>�m and y = � y�m>�m. Here, however, we will 

consider the weight and mass of the motorcycle and rider separately as 

shown on the free-body and kinetic diagrams, Fig. 17–11b. Both of these 

parts move with the same acceleration. We have assumed that the front 

wheel is about to leave the ground, so that the normal reaction NA � 0. 

The three unknowns in the problem are NB , FB , and aG .

Equations of Motion.

S+ �Fx = m(aG)x; FB = (75 kg + 125 kg)aG  (1)

+ c �Fy = m(aG)y; NB - 735.75 N - 1226.25 N = 0

a+ �MB = �(mk)B; -(735.75 N)(0.4 m) - (1226.25 N)(0.8 m) =

 -(75 kg aG)(0.9 m) - (125 kg aG)(0.6 m) (2)

Solving,

  aG = 8.95 m>s2 S  Ans.

  NB = 1962 N  

  FB = 1790 N  

Thus the minimum coefficient of static friction is

 (ms)min =
FB

NB
=

1790 N

1962 N
= 0.912 Ans.

(© R.C. Hibbeler)



 17.3 EQUATIONS OF MOTION: TRANSLATION 431

17

The 100-kg beam BD shown in Fig. 17–12a is supported by two rods 

having negligible mass. Determine the force developed in each rod if 

at the instant u = 30�, v = 6 rad>s.

SOLUTION
Free-Body and Kinetic Diagrams. The beam moves with curvilinear 
translation since all points on the beam move along circular paths, 

each path having the same radius of 0.5 m, but different centers of 

curvature. Using normal and tangential coordinates, the free-body and 

kinetic diagrams for the beam are shown in Fig. 17–12b. Because of the 

translation, G has the same motion as the pin at B, which is connected 

to both the rod and the beam. Note that the tangential component of 

acceleration acts downward to the left due to the clockwise direction 

of A, Fig. 17–12c. Furthermore, the normal component of acceleration 

is always directed toward the center of curvature (toward point A 

for rod AB). Since the angular velocity of AB is 6 rad>s when 

u = 30� , then

(aG)n = v2r = (6 rad>s)2(0.5 m) = 18 m>s2

The three unknowns are TB , TD , and (aG)t .

EXAMPLE   17.7

u � 30�

0.5 m G

A C

DB
0.4 m 0.4 m

(a)

V

G

0.4 m 0.4 m

(b)
981 N

30�30� 30�TB TD

100 kg(aG)t

100 kg(aG)n

=

Fig. 17–12

0.5 m

A

B

an

at

(c)

v � 6 rad/s
A

Equations of Motion.

+ a�Fn = m(aG)n; TB + TD - 981 cos 30� N = 100 kg(18 m>s2) (1)

+ b�Ft = m(aG)t; 981 sin 30� = 100 kg(aG)t (2)

a+ �MG = 0; -(TB cos 30�)(0.4 m) + (TD cos 30�)(0.4 m) = 0 (3)

Simultaneous solution of these three equations gives

  TB = TD = 1.32 kN  Ans.

  (aG)t = 4.905 m>s2 

NOTE: It is also possible to apply the equations of motion along horizontal 

and vertical x, y axes, but the solution becomes more involved.
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P17–1. Draw the free-body and kinetic diagrams of the 

object AB.

A
mk � 0.2

G 100 N3
4

3 m

(a)

2 m
B

0.5 m

100 kg

0.5 m

5

G

1.5 m

0.5 m

2 m

A

B

(b)

100 kg

500 N

100 kg

2 m

2 m

G

30�

A

B mk � 0.2

(c)

4 rad/s

A B

G

2 m 2 m

1 m

(d)

100 kg
1 m

A B

3 rad/s 3 m

60�

2 m 2 m

0.5 m

(e)

G

100 kg

(f)

G

B

A

100 kg

5 3

4

1.5 m0.5 m

1 m

PRELIMINARY PROBLEMS

Prob. P17–1
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P17–2. Draw the free-body and kinetic diagrams of the 

100-kg object.

3 m

O 2 rad/s

20 N � m

(a)

O
4 rad/s

3 m

45�

60 N

(b)

5 m

Unstretched length of spring is 1 m.

4 m

2 rad/s

O

k � 6 N/m 

(c)

3 m

100 N

O

2 m

(d)

v � 4 rad/s

v � 3 rad/s
O

2 m

(e)

45�

2 rad/s

30 N � m

2 m
1 m

(f)

O

Prob. P17–2
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F17–4. Determine the maximum acceleration of the truck 

without causing the assembly to move relative to the truck. 

Also what is the corresponding normal reaction on legs 

A and B? The 100@kg table has a mass center at G and the 

coefficient of static friction between the legs of the table 

and the bed of the truck is ms = 0.2. 

0.6 m 0.9 m

0.75 m
a

G

B A

 Prob. F17–4 

F17–5. At the instant shown both rods of negligible mass 

swing with a counterclockwise angular velocity of 

v = 5 rad>s, while the 50@kg bar is subjected to the 100@N 

horizontal force. Determine the tension developed in the 

rods and the angular acceleration of the rods at this instant. 

 

A C

B D100 N

1 m 1 m

1.5 m

G

 v � 5 rad/s

 Prob. F17–5 
F17–6. At the instant shown, link CD rotates with an 

angular velocity of v = 6 rad>s. If it is subjected to a couple 

moment M = 450 N # m, determine the force developed in 

link AB, the horizontal and vertical component of reaction 

on pin D, and the angular acceleration of link CD at this 

instant. The block has a mass of 50 kg and center of mass at G. 

Neglect the mass of links AB and CD. 

 

A

CD

B
0.4 m

0.6 m
0.1 m

G

M � 450 N�m

v � 6 rad/s0.4 m

 Prob. F17–6 

F17–1. The cart and its load have a total mass of 100 kg. 

Determine the acceleration of the cart and the normal reactions 

on the pair of wheels at A and B. Neglect the mass of the wheels. 

 0.6 m

0.5 m

0.4 m0.3 m

1.2 m
G

B A

100 N

3
4

5

 Prob.  F17–1 

F17–2. If the 80-kg cabinet is allowed to roll down the 

inclined plane, determine the acceleration of the cabinet 

and the normal reactions on the pair of rollers at A and B 

that have negligible mass. 

 

1.5 m

A

B
0.5 m

0.5 m

G

15�

 Prob. F17–2 
F17–3. The 20@lb link AB is pinned to a moving frame at A 

and held in a vertical position by means of a string BC which 

can support a maximum tension of 10 lb. Determine the 

maximum acceleration of the frame without breaking the 

string. What are the corresponding components of reaction 

at the pin A? 

 

3 ft

3 ft

A

B

C

4 ft

a

 Prob. F17–3 

FUNDAMENTAL PROBLEMS
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17–27. The sports car has a weight of 4500 lb and center 

of gravity at G. If it starts from rest it causes the rear 

wheels to slip as it accelerates. Determine how long it 

takes for it to reach a speed of 10 ft>s. Also, what are the 

normal reactions at each of the four wheels on the road? 

The coefficients of static and kinetic friction at the road 

are ms = 0.5 and mk = 0.3, respectively. Neglect the mass 

of the wheels.

4 ftB A

G

2 ft

2.5 ft

Prob. 17–27

*17–28. The assembly has a mass of 8 Mg and is hoisted 

using the boom and pulley system. If the winch at B draws in 

the cable with an acceleration of 2 m>s2, determine the 

compressive force in the hydraulic cylinder needed to support 

the boom. The boom has a mass of 2 Mg and mass center at G.

17–29. The assembly has a mass of 4 Mg and is hoisted 

using the winch at B. Determine the greatest acceleration of 

the assembly so that the compressive force in the hydraulic 

cylinder supporting the boom does not exceed 180 kN. What 

is the tension in the supporting cable? The boom has a mass 

of 2 Mg and mass center at G.

G

C

DA

4 m

1 m

2 m

2 m

6 m

B
60

Probs. 17–28/29

*17–24. The door has a weight of 200 lb and a center of 

gravity at G. Determine how far the door moves in 2 s, 

starting from rest, if a man pushes on it at C with a horizontal 

force F = 30 lb. Also, find the vertical reactions at the 

rollers A and B.

17–25. The door has a weight of 200 lb and a center of 

gravity at G. Determine the constant force F that must be 

applied to the door to push it open 12 ft to the right in 5 s, 

starting from rest. Also, find the vertical reactions at the 

rollers A and B.

6 ft 6 ft
A B

C G 12 ft

5 ft
3 ft

F

Probs. 17–24/25

17–26. The jet aircraft has a total mass of 22 Mg and a 

center of mass at G. Initially at take-off the engines provide 

a thrust 2T = 4 kN and T� = 1.5 kN. Determine the 

acceleration of the plane and the normal reactions on the 

nose wheel at A and each of the two wing wheels located at 

B. Neglect the mass of the wheels and, due to low velocity, 

neglect any lift caused by the wings.

T¿ 2T
G

2.5 m 2.3 m B
1.2 m

A
6 m3 m

Prob. 17–26

PROBLEMS
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17–30. The uniform girder AB has a mass of 8 Mg. 

Determine the internal axial, shear, and bending-moment 

loadings at the center of the girder if a crane gives it an 

upward acceleration of 3 m>s2.

A

C

60� 4 m B

3 m/s2

60�

Prob. 17–30

17–31. A car having a weight of 4000 lb begins to skid and 

turn with the brakes applied to all four wheels. If the 

coefficient of kinetic friction between the wheels and the 

road is mk = 0.8, determine the maximum critical height h 

of the center of gravity G such that the car does not 

overturn. Tipping will begin to occur after the car rotates 

90° from its original direction of motion and, as shown in 

the figure, undergoes translation while skidding. Hint: Draw 

a free-body diagram of the car viewed from the front. When 

tipping occurs, the normal reactions of the wheels on the 

right side (or passenger side) are zero.

y

x
2.5 ft

2.5 ft h

z

G

Prob. 17–31

*17–32. A force of P = 300 N is applied to the 60-kg cart. 

Determine the reactions at both the wheels at A and both 

the wheels at B. Also, what is the acceleration of the cart? 

The mass center of the cart is at G. 

0.3 m

0.08 m

0.2 m

0.3 m

0.4 m

30�

A B

G

P

Prob. 17–32

17–33. Determine the largest force P that can be applied 

to the 60-kg cart, without causing one of the wheel reactions, 

either at A or at B, to be zero. Also, what is the acceleration 

of the cart? The mass center of the cart is at G.

0.3 m

0.08 m

0.2 m

0.3 m

0.4 m

30�

A B

G

P

Prob. 17–33
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17–34. The trailer with its load has a mass of 150-kg and a 

center of mass at G. If it is subjected to a horizontal force of 

P = 600 N, determine the trailer’s acceleration and the 

normal force on the pair of wheels at A and at B. The wheels 

are free to roll and have negligible mass.

1.25 m

0.75 m
1.25 m

0.25 m0.25 m 0.5 m

G

B A

P � 600 N

Prob. 17–34

17–35. The desk has a weight of 75 lb and a center of 

gravity at G. Determine its initial acceleration if a man 

pushes on it with a force F = 60 lb. The coefficient of kinetic 

friction at A and B is mk = 0.2.

*17–36. The desk has a weight of 75 lb and a center of 

gravity at G. Determine the initial acceleration of a desk 

when the man applies enough force F to overcome the static 

friction at A and B. Also, find the vertical reactions on each 

of the two legs at A and at B. The coefficients of static and 

kinetic friction at A and B are ms = 0.5 and mk = 0.2, 

respectively.

G

F

A

30�

B

2 ft 2 ft

1 ft

2 ft

Probs. 17–35/36

17–37. The 150-kg uniform crate rests on the 10-kg cart. 

Determine the maximum force P that can be applied to the 

handle without causing the crate to tip on the cart. Slipping 

does not occur.

1 m

0.5 m

P

Prob. 17–37

17–38. The 150-kg uniform crate rests on the 10-kg cart. 

Determine the maximum force P that can be applied to the 

handle without causing the crate to slip or tip on the cart. 

The coefficient of static friction between the crate and cart 

is ms = 0.2.

1 m

0.5 m

P

Prob. 17–38
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17–39. The bar has a weight per length w and is supported 

by the smooth collar. If it is released from rest, determine 

the internal normal force, shear force, and bending moment 

in the bar as a function of x.

30�

x

Prob. 17–39

*17–40. The smooth 180-lb pipe has a length of 20 ft and a 

negligible diameter. It is carried on a truck as shown. 

Determine the maximum acceleration which the truck can 

have without causing the normal reaction at A to be zero. 

Also determine the horizontal and vertical components of 

force which the truck exerts on the pipe at B.

17–41. The smooth 180-lb pipe has a length of 20 ft and a 

negligible diameter. It is carried on a truck as shown. If the 

truck accelerates at a = 5 ft>s2, determine the normal 

reaction at A and the horizontal and vertical components of 

force which the truck exerts on the pipe at B.

B

A
20 ft

5 ft

12 ft

Probs. 17–40/41

17–42. The uniform crate has a mass of 50 kg and rests on 

the cart having an inclined surface. Determine the smallest 

acceleration that will cause the crate either to tip or slip 

relative to the cart. What is the magnitude of this 

acceleration? The coefficient of static friction between the 

crate and cart is ms = 0.5. 

15�

1 m

0.6 m

F

Prob. 17–42

17–43. Determine the acceleration of the 150-lb cabinet 

and the normal reaction under the legs A and B if P = 35 lb. 

The coefficients of static and kinetic friction between the 

cabinet and the plane are ms = 0.2 and mk = 0.15, 

respectively. The cabinet’s center of gravity is located at G.

A

3.5 ft

1 ft 1 ft

P

4 ft

G

B

Prob. 17–43
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*17–44. The uniform bar of mass m is pin connected to the 

collar, which slides along the smooth horizontal rod. If the 

collar is given a constant acceleration of a, determine 

the bar's inclination angle u. Neglect the collar's mass. 

L

A
a

u

Prob. 17–44

17–45. The drop gate at the end of the trailer has a mass  

of 1.25 Mg and mass center at G. If it is supported by the 

cable AB and hinge at C, determine the tension in the cable 

when the truck begins to accelerate at 5 m>s2. Also, what 

are the horizontal and vertical components of reaction at 

the hinge C?

17–46. The drop gate at the end of the trailer has a mass of 

1.25 Mg and mass center at G. If it is supported by the  

cable AB and hinge at C, determine the maximum 

deceleration of the truck so that the gate does not begin to 

rotate forward. What are the horizontal and vertical 

components of reaction at the hinge C?

B

C

30�

1.5 m
1 m

45�

G

Probs. 17–45/46

17–47. The snowmobile has a weight of 250 lb, centered  

at G1, while the rider has a weight of 150 lb, centered at G2. 

If the acceleration is a = 20 ft>s2, determine the maximum 

height h of G2 of the rider so that the snowmobile’s front 

skid does not lift off the ground. Also, what are the traction 

(horizontal) force and normal reaction under the rear  

tracks at A?

*17–48. The snowmobile has a weight of 250 lb, centered 

at G1, while the rider has a weight of 150 lb, centered at G2. 

If h = 3 ft, determine the snowmobile’s maximum 

permissible acceleration a so that its front skid does not lift 

off the ground. Also, find the traction (horizontal) force and 

the normal reaction under the rear tracks at A.

a

1.5 ft

0.5 ft

G1

G2

1 ft

h

A

Probs. 17–47/48

17–49. If the cart’s mass is 30 kg and it is subjected to  

a horizontal force of P = 90 N, determine the tension in  

cord AB and the horizontal and vertical components of 

reaction on end C of the uniform 15-kg rod BC.

17–50. If the cart’s mass is 30 kg, determine the horizontal 

force P that should be applied to the cart so that the cord AB 

just becomes slack. The uniform rod BC has a mass  

of 15 kg.

P

30�

30�

1 m

C

B

A

Probs. 17–49/50
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17–53. The crate C has a weight of 150 lb and rests on the 

truck elevator for which the coefficient of static friction is 

ms = 0.4. Determine the largest initial angular acceleration a, 

starting from rest, which the parallel links AB and DE  

can have without causing the crate to slip. No tipping occurs.

B

A
C

D
2 ft

2 ft

E

30�

a

a

Prob. 17–53

17–54. The crate C has a weight of 150 lb and rests on the 

truck elevator. Determine the initial friction and normal 

force of the elevator on the crate if the parallel links are given 

an angular acceleration a = 2 rad>s2  starting from rest.

B

A
C

D
2 ft

2 ft

E

30�

a

a

Prob. 17–54

17–51. The pipe has a mass of 800 kg and is being towed 

behind the truck. If the acceleration of the truck is 

at = 0.5 m>s2, determine the angle u and the tension in the 

cable. The coefficient of kinetic friction between the pipe 

and the ground is mk = 0.1.

45�

0.4 m

G

A

B

C

a t

u

Prob. 17–51

*17–52. The pipe has a mass of 800 kg and is being towed 

behind a truck. If the angle u = 30�, determine the 

acceleration of the truck and the tension in the cable.  

The coefficient of kinetic friction between the pipe and the 

ground is mk = 0.1.

45�

0.4 m

G

A

B

C

a t

u

Prob. 17–52
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17–55. The 100-kg uniform crate C rests on the elevator 

floor where the coefficient of static friction is ms = 0.4. 

Determine the largest initial angular acceleration a, starting 

from rest at u = 90�, without causing the crate to slip. No 

tipping occurs.

1.2 m

0.6 m

1.5 m

1.5 m

C

B

D

E

A
a

u u

Prob. 17–55

*17–56. The two uniform 4-kg bars DC and EF are fixed 

(welded) together at E. Determine the normal force NE , 

shear force V E , and moment ME , which DC exerts on EF at 

E if at the instant u = 60� BC has an angular velocity 

v = 2 rad>s and an angular acceleration a = 4 rad>s2  

as shown.

u � 60� a � 4 rad/s2

v � 2 rad/s

E

F

2 m2 m

D

BA

C

1.5 m

Prob. 17–56

17.4  Equations of Motion: Rotation 
about a Fixed Axis

Consider the rigid body (or slab) shown in Fig. 17–13a, which is 

constrained to rotate in the vertical plane about a fixed axis perpendicular 

to the page and passing through the pin at O. The angular velocity and 

angular acceleration are caused by the external force and couple 

moment system acting on the body. Because the body’s center of mass G 

moves around a circular path, the acceleration of this point is best 

represented by its tangential and normal components. The tangential 
component of acceleration has a magnitude of (aG)t = arG and must act 

in a direction which is consistent with the body’s angular acceleration A. 

The magnitude of the normal component of acceleration is (aG)n = v2rG . 

This component is always directed from point G to O, regardless of the 

rotational sense of V.

G

A

V

(aG)t

(aG)n
rG

M1

M2

F4

F3

F2

F1

(a)

O

Fig. 17–13 
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The free-body and kinetic diagrams for the body are shown in Fig. 17–13b. 

The two components m(aG)t and m(aG)n , shown on the kinetic diagram, 

are associated with the tangential and normal components of acceleration 

of the body’s mass center. The IG A vector acts in the same direction as A 

and has a magnitude of IGa, where IG is the body’s moment of inertia 

calculated about an axis which is perpendicular to the page and passes 

through G. From the derivation given in Sec. 17.2, the equations of 

motion which apply to the body can be written in the form

 
�Fn = m(aG)n = mv2rG

�Ft = m(aG)t = marG

�MG = IGa

 (17–14)

The moment equation can be replaced by a moment summation about 

any arbitrary point P on or off the body provided one accounts for the 

moments �(mk)P produced by IG A, m(aG)t , and m(aG)n about the point.

Moment Equation About Point O. Often it is convenient to 

sum moments about the pin at O in order to eliminate the unknown 

force FO . From the kinetic diagram, Fig. 17–13b, this requires

a+ �MO = �(mk)O; �MO = rGm(aG)t + IGa (17–15)

Note that the moment of m(aG)n is not included here since the line of 

action of this vector passes through O. Substituting (aG)t = rGa, we may 

rewrite the above equation as a+ �MO = (IG + mrG
2 )a. From the parallel-

axis theorem, IO = IG + md2, and therefore the term in parentheses 

represents the moment of inertia of the body about the fixed axis of 
rotation passing through O.* Consequently, we can write the three 

equations of motion for the body as

 

�Fn = m(aG)n = mv2rG

�Ft = m(aG)t = marG

�MO = IOa

 (17–16)

When using these equations, remember that ;IOa< accounts for the 

“moment” of both m(aG)t and IG A about point O, Fig. 17–13b. In other 

words, �MO = �(mk)O = IOa, as indicated by Eqs. 17–15 and 17–16.

O

G
(aG)t

(aG)n
rG

M1

M2

F4

F3

F2

F1

(a)

A

V

O

G

M1

M2

F4

F3

F2

F1

W

FO

=

(b)

rGO

G

m(aG)t

m(aG)n

IGA

Fig. 17–13 (cont.) 
*The result �MO = IOa can also be obtained directly from Eq. 17–6 by selecting  

point P to coincide with O, realizing that (aP)x = (aP)y = 0.
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Procedure for Analysis

Kinetic problems which involve the rotation of a body about a fixed 

axis can be solved using the following procedure.

Free-Body Diagram.

  Establish the inertial n, t coordinate system and specify the 

direction and sense of the accelerations (aG)n and (aG)t and the 

angular acceleration A of the body. Recall that (aG)t must act in a 

direction which is in accordance with the rotational sense of A, 

whereas (aG)n always acts toward the axis of rotation, point O.

  Draw the free-body diagram to account for all the external forces 

and couple moments that act on the body.

  Determine the moment of inertia IG or IO .

  Identify the unknowns in the problem.

  If it is decided that the rotational equation of motion 

�MP = �(mk)P is to be used, i.e., P is a point other than G or O, 

then consider drawing the kinetic diagram in order to help 

“visualize” the “moments” developed by the components m(aG)n , 

m(aG)t , and IG A when writing the terms for the moment sum 

�(mk)P .

Equations of Motion.

  Apply the three equations of motion in accordance with the 

established sign convention.

  If moments are summed about the body’s mass center, G, then 

�MG = IGa, since (maG)t and (maG)n create no moment about G.

  If moments are summed about the pin support O on the axis of 

rotation, then (maG)n creates no moment about O, and it can be 

shown that �MO = IOa.

Kinematics.

  Use kinematics if a complete solution cannot be obtained strictly 

from the equations of motion.

  If the angular acceleration is variable, use

a =
dv

dt
 a du = v dv  v =

du

dt

  If the angular acceleration is constant, use

 v = v0 + act

 u = u0 + v0t + 1
2 act

2

 v2 = v0
2 + 2ac(u - u0)

The crank on the oil-pumping rig undergoes 
rotation about a fixed axis which is caused by 
a driving torque M of the motor. The loadings 
shown on the free-body diagram cause the 
effects shown on the kinetic diagram. If 
moments are summed about the mass 
center,  G, then �MG = IGa. However, if 
moments are summed about point O, noting 

that (aG)t = ad, then a+ �MO = IGa+  
m(aG)t d + m(aG)n(0) = (IG + md2)a = IOa. 
(© R.C. Hibbeler)

Oy

Ox

M

W

T

=

G

G

O

O

IGA

m(aG)n

m(aG)t

d
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The unbalanced 50-lb flywheel shown in Fig. 17–14a has a radius of 

gyration of kG = 0.6 ft about an axis passing through its mass center G. 

If it is released from rest, determine the horizontal and vertical 

components of reaction at the pin O.

SOLUTION
Free-Body and Kinetic Diagrams. Since G moves in a circular path, 

it will have both normal and tangential components of acceleration. 

Also, since a, which is caused by the flywheel’s weight, acts clockwise, 

the tangential component of acceleration must act downward. Why? 

Since v = 0, only m(aG)t = marG and IGa are shown on the kinetic 

diagram in Fig. 17–14b. Here, the moment of inertia about G is

IG = mkG
2 = (50 lb>32.2 ft>s2)(0.6 ft)2 = 0.559 slug # ft2

The three unknowns are On , Ot , and a.

Equations of Motion.

d+ �Fn = mv2rG; On = 0 Ans.

+ T �Ft = marG;  -Ot + 50 lb = a 50 lb

32.2 ft>s2
b (a)(0.5 ft) (1)

c+ �MG = IGa; Ot(0.5 ft) = (0.5590 slug # ft2)a 

Solving,

 a = 26.4 rad>s2 Ot = 29.5 lb Ans.

Moments can also be summed about point O in order to eliminate On 

and Ot and thereby obtain a direct solution for A, Fig. 17–14b. This can 

be done in one of two ways.

c+ �MO = �(mk)O;

(50 lb)(0.5 ft) = (0.5590 slug # ft2)a + c a 50 lb

32.2 ft>s2
ba(0.5 ft) d (0.5 ft)

 50 lb(0.5 ft) = 0.9472a (2)

If �MO = IOa is applied, then by the parallel-axis theorem the 

moment of inertia of the flywheel about O is

IO = IG + mrG
2 = 0.559 + a 50

32.2
b (0.5)2 = 0.9472 slug # ft2

Hence,

c+ �MO = IOa; (50 lb)(0.5 ft) = (0.9472 slug # ft2)a

which is the same as Eq. 2. Solving for a and substituting into Eq. 1 

yields the answer for Ot obtained previously.

EXAMPLE   17.8

0.5 ft

G

(a)

O

n

t

(b)

0.5 ft

O
GOn

Ot 50 lb

O G

rG

IGa

marG

=

Fig. 17–14 
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At the instant shown in Fig. 17–15a, the 20-kg slender rod has an 

angular velocity of v = 5 rad>s. Determine the angular acceleration 

and the horizontal and vertical components of reaction of the pin 

on the rod at this instant.

v � 5 rad/s

3 m

60 N � m

(a)

O

EXAMPLE   17.9

 IGA

O G

O G

1.5 m

On

Ot

60 N � m

20(9.81) N

(b)

mv2rG

marG

rG

=

Fig. 17–15 

SOLUTION
Free-Body and Kinetic Diagrams. Fig. 17–15b. As shown on the 

kinetic diagram, point G moves around a circular path and so it has two 

components of acceleration. It is important that the tangential 

component at = arG act downward since it must be in accordance with 

the rotational sense of A. The three unknowns are On , Ot , and a.

Equation of Motion. 

d+ �Fn = mv2rG; On = (20 kg)(5 rad>s)2(1.5 m)

+ T �Ft = marG; -Ot + 20(9.81)N = (20 kg)(a)(1.5 m)

c+ �MG = IGa; Ot(1.5 m) + 60 N # m = 3 1
12(20 kg)(3 m)24a

Solving

 On = 750 N Ot = 19.05 N a = 5.90 rad>s2 Ans.

A more direct solution to this problem would be to sum moments 

about point O to eliminate On and Ot and obtain a direct solution for a. 

Here,

c+ �MO = �(mk)O; 60 N # m + 20(9.81) N(1.5 m) =

 3 1
12(20 kg)(3 m)24a + [20 kg(a)(1.5 m)](1.5 m)

  a = 5.90 rad>s2 Ans.

Also, since IO = 1
3 ml2 for a slender rod, we can apply

c+ �MO = IOa; 60 N # m + 20(9.81) N(1.5 m) = 31
3(20 kg)(3 m)24a

 a = 5.90 rad>s2 Ans.

NOTE: By comparison, the last equation provides the simplest solution 

for a and does not require use of the kinetic diagram.
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The drum shown in Fig. 17–16a has a mass of 60 kg and a radius of 

gyration kO = 0.25 m. A cord of negligible mass is wrapped around 

the periphery of the drum and attached to a block having a mass of 20 kg. 

If the block is released, determine the drum’s angular acceleration.

SOLUTION I 
Free-Body Diagram. Here we will consider the drum and block 

separately, Fig. 17–16b. Assuming the block accelerates downward at a, 

it creates a counterclockwise angular acceleration A of the drum.

The moment of inertia of the drum is

IO = mkO
2 = (60 kg)(0.25 m)2 = 3.75 kg # m2

There are five unknowns, namely Ox , Oy , T, a, and a.

Equations of Motion. Applying the translational equations of 

motion �Fx = m(aG)x and �Fy = m(aG)y to the drum is of no 

consequence to the solution, since these equations involve the 

unknowns Ox and Oy . Thus, for the drum and block, respectively,

a+ �MO = IOa; T(0.4 m) = (3.75 kg # m2)a (1)

+ c �Fy = m(aG)y; -20(9.81)N + T = -(20 kg)a (2)

Kinematics. Since the point of contact A between the cord and 

drum has a tangential component of acceleration a, Fig. 17–16a, then

a+a = ar; a = a(0.4 m) (3)

Solving the above equations,

 T = 106 N  a = 4.52 m>s2

  a = 11.3 rad>s2d   Ans.
SOLUTION II
Free-Body and Kinetic Diagrams. The cable tension T can be 

eliminated from the analysis by considering the drum and block as a 

single system, Fig. 17–16c. The kinetic diagram is shown since moments 

will be summed about point O.

Equations of Motion. Using Eq. 3 and applying the moment 

equation about O to eliminate the unknowns Ox and Oy , we have

a+ �MO = �(�k)O; [20(9.81) N] (0.4 m) =
 (3.75 kg # m2)a + [20 kg(a 0.4 m)](0.4 m) 

 a = 11.3 rad>s2 Ans.

NOTE: If the block were removed and a force of 20(9.81) N were 

applied to the cord, show that a = 20.9 rad>s2. This value is larger 

since the block has an inertia, or resistance to acceleration.

EXAMPLE   17.10

0.4 m
O

(a)

A

0.4 m
O

(b)

Ox

Oy

60 (9.81) N

20 (9.81) N

T

T y

x

a

A

0.4 m

(c)

Ox

Oy

60 (9.81) N

O
0.4 m O

20(9.81) N (20 kg)a

IOa

=

Fig. 17–16 
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The slender rod shown in Fig. 17–17a has a mass m and length l and is 

released from rest when u = 0�. Determine the horizontal and vertical 

components of force which the pin at A exerts on the rod at the instant 

u = 90�.

SOLUTION
Free-Body and Kinetic Diagrams. The free-body diagram for the 

rod in the general position u is shown in Fig. 17–17b. For convenience, 

the force components at A are shown acting in the n and t directions. 

Note that A acts clockwise and so (aG)t acts in the +t direction.

The moment of inertia of the rod about point A is IA = 1
3 ml2.

Equations of Motion. Moments will be summed about A in order 

to eliminate An and At.

 + a�Fn = mv2rG;  An - mg sin u = mv2(l>2) (1)

 + b�Ft = marG;  At + mg cos u = ma(l>2) (2)

c+ �MA = IAa;  mg cos u(l>2) = 11
3 ml22a (3)

Kinematics. For a given angle u there are four unknowns in the 

above three equations: An , At , v, and a. As shown by Eq. 3, a is not 
constant; rather, it depends on the position u of the rod. The necessary 

fourth equation is obtained using kinematics, where a and v can be 

related to u by the equation

(c+) v dv = a du (4)

Note that the positive clockwise direction for this equation agrees 

with that of Eq. 3. This is important since we are seeking a simultaneous 

solution.

In order to solve for v at u = 90�, eliminate a from Eqs. 3 and 4, 

which yields

v dv = (1.5g>l) cos u du

Since v = 0 at u = 0�, we have

  L
v

0

v dv = (1.5g>l)L
90�

0�

cos u du 

  v2 = 3g>l  

Substituting this value into Eq. 1 with u = 90� and solving Eqs. 1 to 3 

yields

a = 0

 At = 0 A n = 2.5 mg Ans.

NOTE: If �MA = �(�k)A  is used, one must account for the moments 

of IG A and m(aG)t about A. 

EXAMPLE   17.11

l

A

(a)

u

(b)

G

mv2

IGÅ

l–
2

A

An

At

mg

G

u

u

=

l–
2( (

mÅ l–
2( (

Fig. 17–17 
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F17–10. At the instant shown, the 30@kg disk has a 

counterclockwise angular velocity of v = 10 rad>s. 

Determine the tangential and normal components of 

reaction of the pin O on the disk and the angular 

acceleration of the disk at this instant. 

0.3 m

O

P � 50 N
3

4

5

 v � 10 rad/s

Prob. F17–10
F17–11. The uniform slender rod has a mass of 15 kg. 

Determine the horizontal and vertical components of 

reaction at the pin O, and the angular acceleration of the 

rod just after the cord is cut. 

O

0.6 m 0.3 m

Prob. F17–11 
F17–12. The uniform 30@kg slender rod is being pulled by 

the cord that passes over the small smooth peg at A. If the 

rod has a counterclockwise angular velocity of v = 6 rad>s 

at the instant shown, determine the tangential and normal 

components of reaction at the pin O and the angular 

acceleration of the rod. 

A

O

P � 300 N

0.8 m

0.6 m 0.3 m

 v � 6 rad/s

Prob. F17–12 

F17–7. The 100@kg wheel has a radius of gyration about its 

center O of kO = 500 mm. If the wheel starts from rest, 

determine its angular velocity in t = 3 s. 

0.6 m

O

P � 100 N

Prob. F17–7 

F17–8. The 50@kg disk is subjected to the couple moment 

of M = (9t) N # m, where t is in seconds. Determine the 

angular velocity of the disk when t = 4 s starting from rest. 

O

0.3 m
M � (9t) N�m

Prob. F17–8 

F17–9. At the instant shown, the uniform 30@kg slender 

rod has a counterclockwise angular velocity of v = 6 rad>s. 

Determine the tangential and normal components of 

reaction of pin O on the rod and the angular acceleration of 

the rod at this instant. 

O

0.3 m 0.6 m

M � 60 N�m

Prob. F17–9 

FUNDAMENTAL PROBLEMS
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              PROBLEMS 

17–57. The 10-kg wheel has a radius of gyration kA = 200 mm. 

If the wheel is subjected to a moment M = (5t) N # m, where t 
is in seconds, determine its angular velocity when t = 3 s 

starting from rest. Also, compute the reactions which the fixed 

pin A exerts on the wheel during the motion.

A

M

Prob. 17–57

17–58. The uniform 24-kg plate is released from rest at the 

position shown. Determine its initial angular acceleration 

and the horizontal and vertical reactions at the pin A.

0.5 m

A

0.5 m

Prob. 17–58

17–59. The uniform slender rod has a mass m. If it is 

released from rest when u = 0�, determine the magnitude 

of the reactive force exerted on it by pin B when u = 90�.

A

B

C

L
3

2
3 L

u

Prob. 17–59

*17–60. The bent rod has a mass of 2 kg>m. If it is released 

from rest in the position shown, determine its initial angular 

acceleration and the horizontal and vertical components of 

reaction at A.

1.5 m

1.5 m

A

B

C

Prob. 17–60

17–61. If a horizontal force of P = 100 N is applied to the 

300-kg reel of cable, determine its initial angular 

acceleration. The reel rests on rollers at A and B and has a 

radius of gyration of kO = 0.6 m.

20� 20�

O

A B

0.75 m

1 m

P

Prob. 17–61
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17–62. The 10-lb bar is pinned at its center O and 

connected to a torsional spring. The spring has a stiffness 

k = 5 lb # ft>rad, so that the torque developed is 

M = (5u) lb # ft, where u is in radians. If the bar is released 

from rest when it is vertical at u = 90�, determine its 

angular velocity at the instant u = 0�.

17–63. The 10-lb bar is pinned at its center O and 

connected to a torsional spring. The spring has a stiffness 

k = 5 lb # ft>rad, so that the torque developed is 

M = (5u) lb # ft, where u is in radians. If the bar is released 

from rest when it is vertical at u = 90�, determine its 

angular velocity at the instant u = 45�.

1 ft

1 ft

O

u

Probs. 17–62/63

*17–64. A cord is wrapped around the outer surface of the 

8-kg disk. If a force of F = (¼ u2) N, where u is in radians,  

is applied to the cord, determine the disk’s angular 

acceleration when it has turned 5 revolutions. The disk has 

an initial angular velocity of v0 = 1 rad>s. 

v

300 mm

O

F

Prob. 17–64

17–65. Disk A has a weight of 5 lb and disk B has a weight 

of 10 lb. If no slipping occurs between them, determine the 

couple moment M which must be applied to disk A to give 

it an angular acceleration of 4 rad>s2.

0.75 ft

B

M

A

a � 4 rad/s2

0.5 ft

Prob. 17–65

17–66. The kinetic diagram representing the general 

rotational motion of a rigid body about a fixed axis passing 

through O is shown in the figure. Show that IGA may be 

eliminated by moving the vectors m(aG)t and m(aG)n to  

point P, located a distance rGP = k2
G>rOG from the center of 

mass G of the body. Here kG represents the radius of 

gyration of the body about an axis passing through G. The 

point P is called the center of percussion of the body.

rGP

rOG

m(aG)n

G
IG

m(aG)t

O

P

a

a

Prob. 17–66
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17–67. If the cord at B suddenly fails, determine the 

horizontal and vertical components of the initial reaction at 

the pin A, and the angular acceleration of the 120-kg beam. 

Treat the beam as a uniform slender rod.

B
A

2 m 2 m

800 N

Prob. 17–67

*17–68. The device acts as a pop-up barrier to prevent the 

passage of a vehicle. It consists of a 100-kg steel plate AC 

and a 200-kg counterweight solid concrete block located as 

shown. Determine the moment of inertia of the plate and 

block about the hinged axis through A. Neglect the mass of 

the supporting arms AB. Also, determine the initial angular 

acceleration of the assembly when it is released from rest at 

u = 45°.

AC

1.25 m

0.5 m
0.5 m

0.3 m

B
u

Prob. 17–68

17–69. The 20-kg roll of paper has a radius of gyration  

kA = 90 mm about an axis passing through point A. It is pin 

supported at both ends by two brackets AB. If the roll rests 

against a wall for which the coefficient of kinetic friction is 

μk = 0.2 and a vertical force F = 30 N is applied to the end of 

the paper, determine the angular acceleration of the roll as 

the paper unrolls.

17–70. The 20-kg roll of paper has a radius of gyration  

kA = 90 mm about an axis passing through point A. It is pin 

supported at both ends by two brackets AB. If the roll rests 

against a wall for which the coefficient of kinetic friction is 

μk = 0.2, determine the constant vertical force F that must 

be applied to the roll to pull off 1 m of paper in t = 3 s 

starting from rest. Neglect the mass of paper that is removed.

300 mm

B

AC
125 mm

F

Probs. 17–69/70

17–71. The reel of cable has a mass of 400 kg and a radius 

of gyration of kA = 0.75 m. Determine its angular velocity 

when t = 2 s, starting from rest, if the force P = (20t2 + 80) N, 

when t is in seconds. Neglect the mass of the unwound cable, 

and assume it is always at a radius of 0.5 m.

A

1 m

0.5 m P

Prob. 17–71
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*17–72. The 30-kg disk is originally spinning at v = 125 rad>s. 
If it is placed on the ground, for which the coefficient of 

kinetic friction is μC = 0.5, determine the time required for 

the motion to stop. What are the horizontal and vertical 

components of force which the member AB exerts on the 

pin at A during this time? Neglect the mass of AB.

B

0.3 m

0.5 m

0.5 m   v � 125 rad/s
C

A

Prob. 17–72

17–73. Cable is unwound from a spool supported on small 

rollers at A and B by exerting a force T = 300 N on the 

cable. Compute the time needed to unravel 5 m of cable 

from the spool if the spool and cable have a total mass of 

600 kg and a radius of gyration of kO = 1.2 m. For the 

calculation, neglect the mass of the cable being unwound 

and the mass of the rollers at A and B. The rollers turn with 

no friction.

30�

1 m

O

T � 300 N

0.8 m

A B

1.5 m

Prob. 17–73

17–74. The 5-kg cylinder is initially at rest when it is placed 

in contact with the wall B and the rotor at A. If the rotor 

always maintains a constant clockwise angular velocity 

v = 6 rad>s, determine the initial angular acceleration of 

the cylinder. The coefficient of kinetic friction at the 

contacting surfaces B and C is mk = 0.2.

C

A

v

125 mm

45�

B

Prob. 17–74

17–75. The wheel has a mass of 25 kg and a radius of 

gyration kB = 0.15 m. It is originally spinning at 

v = 40 rad>s. If it is placed on the ground, for which the 

coefficient of kinetic friction is mC = 0.5, determine the 

time required for the motion to stop. What are the horizontal 

and vertical components of reaction which the pin at A 

exerts on AB during this time? Neglect the mass of AB.

0.3 m

B

0.4 m

A

C

0.2 m

v

Prob. 17–75
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*17–76. The 20-kg roll of paper has a radius of gyration  

kA = 120 mm about an axis passing through point A. It is pin 

supported at both ends by two brackets AB. The roll rests 

on the floor, for which the coefficient of kinetic friction is  

μk = 0.2. If a horizontal force F = 60 N is applied to the end 

of the paper, determine the initial angular acceleration of 

the roll as the paper unrolls.

300 mm

C

400 mm

B

A

F

Prob. 17–76

17–77. Disk D turns with a constant clockwise angular 

velocity of 30 rad>s. Disk E has a weight of 60 lb and is initially 

at rest when it is brought into contact with D. Determine the 

time required for disk E to attain the same angular velocity as 

disk D. The coefficient of kinetic friction between the two 

disks is μk = 0.3. Neglect the weight of bar BC.

A

B

1 ft

2 ft

2 ft

1 ft

 � 30 rad/s

C

E

D

v

Prob. 17–77

17–78. Two cylinders A and B, having a weight of 10 lb and 

5 lb, respectively, are attached to the ends of a cord which 

passes over a 3-lb pulley (disk). If the cylinders are released 

from rest, determine their speed in t = 0.5 s. The cord does 

not slip on the pulley. Neglect the mass of the cord. 

Suggestion: Analyze the “system” consisting of both the 

cylinders and the pulley.

A

B

O
0.75 ft

Prob. 17–78

17–79. The two blocks A and B have a mass of 5 kg and 

10 kg, respectively. If the pulley can be treated as a disk of 

mass 3 kg and radius 0.15 m, determine the acceleration of 

block A. Neglect the mass of the cord and any slipping on 

the pulley.

*17–80. The two blocks A and B have a mass mA and mB, 

respectively, where mB 7 mA. If the pulley can be treated as 

a disk of mass M, determine the acceleration of block A. 

Neglect the mass of the cord and any slipping on the pulley.

A

B

r O

Probs. 17–79/80
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17–81. Determine the angular acceleration of the 25-kg 

diving board and the horizontal and vertical components of 

reaction at the pin A the instant the man jumps off. Assume 

that the board is uniform and rigid, and that at the instant 

he jumps off the spring is compressed a maximum amount 

of 200 mm, v = 0, and the board is horizontal. Take 

k = 7 kN>m.

k
A

1.5 m 1.5 m

Prob. 17–81

17–82. The lightweight turbine consists of a rotor which is 

powered from a torque applied at its center. At the instant 

the rotor is horizontal it has an angular velocity of 15 rad>s 

and a clockwise angular acceleration of 8 rad>s2. Determine 

the internal normal force, shear force, and moment at a 

section through A. Assume the rotor is a 50-m-long slender 

rod, having a mass of 3 kg>m.

25 m

A

10 m

Prob. 17–82

17–83. The two-bar assembly is released from rest in the 

position shown. Determine the initial bending moment at 

the fixed joint B. Each bar has a mass m and length l.

A l

l

B

C

Prob. 17–83

*17–84. The armature (slender rod) AB has a mass of 

0.2  kg and can pivot about the pin at A. Movement is 

controlled by the electromagnet E, which exerts a horizontal 

attractive force on the armature at B of FB = (0.2(10-3)l-2) N, 

where l in meters is the gap between the armature and the 

magnet at any instant. If the armature lies in the horizontal 

plane, and is originally at rest, determine the speed of the 

contact at B the instant l = 0.01 m. Originally l = 0.02 m.

B

150 mm

A

E

l

Prob. 17–84
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17–85. The bar has a weight per length of w. If it is rotating 

in the vertical plane at a constant rate v about point O, 
determine the internal normal force, shear force, and 

moment as a function of x and  u.

x

L

O

u

v

Prob. 17–85

17–86. The 4-kg slender rod is initially supported 

horizontally by a spring at B and pin at A. Determine the 

angular acceleration of the rod and the acceleration of the 

rod’s mass center at the instant the 100-N force is applied.

A

1.5 m 1.5 m

100 N

k � 20 N/m
B 

Prob. 17–86

17–87. The 100-kg pendulum has a center of mass at G and 

a radius of gyration about G of kG = 250 mm. Determine the 

horizontal and vertical components of reaction on the beam 

by the pin A and the normal reaction of the roller B at the 

instant u = 90° when the pendulum is rotating at  

v = 8 rad>s. Neglect the weight of the beam and the support.

*17–88. The 100-kg pendulum has a center of mass at G 

and a radius of gyration about G of kG = 250 mm. Determine 

the horizontal and vertical components of reaction on the 

beam by the pin A and the normal reaction of the roller B at 

the instant u = 0° when the pendulum is rotating at  

v = 4 rad>s. Neglect the weight of the beam and the support.

A B

C

0.6 m 0.6 m

0.75 m

1 m

G

v

u

Probs. 17–87/88

17–89. The “Catherine wheel” is a firework that consists of 

a coiled tube of powder which is pinned at its center. If the 

powder burns at a constant rate of 20 g>s such as that the 

exhaust gases always exert a force having a constant 

magnitude of 0.3 N, directed tangent to the wheel, determine 

the angular velocity of the wheel when 75% of the mass is 

burned off. Initially, the wheel is at rest and has a mass of 

100 g and a radius of r = 75 mm. For the calculation, consider 

the wheel to always be a thin disk.

0.3 N

r

C

Prob. 17–89
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17.5  Equations of Motion: General 
Plane Motion

The rigid body (or slab) shown in Fig. 17–18a is subjected to general plane 

motion caused by the externally applied force and couple-moment system. 

The free-body and kinetic diagrams for the body are shown in Fig. 17–18b. 

If an x and y inertial coordinate system is established as shown, the three 

equations of motion are

 
�Fx = m(aG)x

�Fy = m(aG)y

�MG = IGa       

 (17–17)

In some problems it may be convenient to sum moments about a point P 

other than G in order to eliminate as many unknown forces as possible 

from the moment summation. When used in this more general case, the 

three equations of motion are

 
�Fx = m(aG)x

�Fy = m(aG)y

�MP = �(mk)P

 (17–18)

Here �(mk)P represents the moment sum of IG A and maG (or its 

components) about P as determined by the data on the kinetic diagram.

Moment Equation About the IC. There is a particular type of 

problem that involves a uniform disk, or body of circular shape, that rolls 

on a rough surface without slipping, Fig. 17–19. If we sum the moments 

about the instantaneous center of zero velocity, then �(mk)IC becomes 

IICa, so that 

 �MIC = IICa  (17–19)

This result compares with�MO = IOa , which is used for a body pinned at 

point O, Eq. 17–16. See Prob. 17–90.

aG

G

M1

M2

F4

F1

F2

F3

(a)

V

A

(b)

�

G

IGA

m(aG)y

m(aG)x

maG

G

M1

M2

F4

F1

F2

F3

W

y

x

Fig. 17–18 

F

A

IC

Fig. 17–19
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As the soil compactor, or “sheep’s foot roller” 
moves forward, the roller has general plane 
motion. The forces shown on its free-body 
diagram cause the effects shown on the kinetic 
diagram. If moments are summed about the 
mass center, G, then �MG = IGa. However, if 
moments are summed about point A (the IC) 
then a+ �MA = IGa + (maG)d = IAa.

=

IG

Gy

Gx

FA

NA

maG

W

G

G

A

A

d

AProcedure for Analysis

Kinetic problems involving general plane motion of a rigid body can 

be solved using the following procedure.

Free-Body Diagram.

  Establish the x, y inertial coordinate system and draw the free-

body diagram for the body.

  Specify the direction and sense of the acceleration of the mass 

center, aG , and the angular acceleration A of the body.

  Determine the moment of inertia IG .

  Identify the unknowns in the problem.

  If it is decided that the rotational equation of motion 

�MP = �(mk)P is to be used, then consider drawing the kinetic 

diagram in order to help “visualize” the “moments” developed by 

the components m(aG)x , m(aG)y , and IG A when writing the terms 

in the moment sum �(mk)P .

Equations of Motion.

  Apply the three equations of motion in accordance with the 

established sign convention.

  When friction is present, there is the possibility for motion with 

no slipping or tipping. Each possibility for motion should be 

considered.

Kinematics.

  Use kinematics if a complete solution cannot be obtained strictly 

from the equations of motion.

  If the body’s motion is constrained due to its supports, additional 

equations may be obtained by using aB = aA + aB>A , which 

relates the accelerations of any two points A and B on the body.

  When a wheel, disk, cylinder, or ball rolls without slipping, then 

aG = ar.

(© R.C. Hibbeler)
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Determine the angular acceleration of the spool in Fig. 17–20a. The 

spool has a mass of 8 kg and a radius of gyration of kG = 0.35 m. The 

cords of negligible mass are wrapped around its inner hub and  

outer rim.

SOLUTION I 
Free-Body and Kinetic Diagrams. Fig. 17–20b. The 100-N force 

causes aG to act upward. Also, A acts clockwise, since the spool winds 

around the cord at A.

There are three unknowns T, aG , and a. The moment of inertia of 

the spool about its mass center is

IG = mkG
2 = 8 kg(0.35 m)2 = 0.980 kg # m2

Equations of Motion.
+ c �Fy = m(aG)y;  T + 100 N - 78.48 N = (8 kg)aG (1)

c+ �MG = IGa; 100 N(0.2 m) - T(0.5 m) = (0.980 kg # m2)a (2)

Kinematics. A complete solution is obtained if kinematics is used to 

relate aG to a. In this case the spool “rolls without slipping” on the cord 

at A. Hence, we can use the results of Example 16.4 or 16.15 so that,

(c+) aG = ar; aG = a (0.5 m) (3)

Solving Eqs. 1 to 3, we have

  a = 10.3 rad>s2 Ans.

  aG = 5.16 m>s2  

  T = 19.8 N  

SOLUTION II
Equations of Motion. We can eliminate the unknown T by summing 

moments about point A. From the free-body and kinetic diagrams  

Figs. 17–20b and 17–20c, we have

c+ �MA = �(mk)A;  100 N(0.7 m) - 78.48 N(0.5 m)

= (0.980 kg # m2)a + [(8 kg)aG](0.5 m)

Using Eq. (3),

 a = 10.3 rad>s2 Ans.

SOLUTION III
Equations of Motion. The simplest way to solve this problem is to 

realize that point A is the IC for the spool. Then Eq. 17–19 applies.

c+ �MA = IAa; (100 N)(0.7 m) - (78.48 N)(0.5 m)

= [0.980 kg # m2 + (8 kg)(0.5 m)2]a

 a = 10.3 rad>s2

EXAMPLE   17.12

0.5 m0.2 m

A

100 N

G

(a)

100 N

0.2 m
0.5 m

G

78.48 N

T

A

=

G

(8 kg) aG

(0.980 kg�m2)

(b)

AA
0.5 m

Fig. 17–20 
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The 50-lb wheel shown in Fig. 17–21 has a radius of gyration 

kG = 0.70 ft. If a 35@lb # ft couple moment is applied to the wheel, 

determine the acceleration of its mass center G. The coefficients of 

static and kinetic friction between the wheel and the plane at A are 

ms = 0.3 and mk = 0.25, respectively.

SOLUTION
Free-Body and Kinetic Diagrams. By inspection of Fig. 17–21b, it 

is seen that the couple moment causes the wheel to have a clockwise 

angular acceleration of A. As a result, the acceleration of the mass 

center, aG , is directed to the right. The moment of inertia is

IG = mkG
2 =

50 lb

32.2 ft>s2
 (0.70 ft)2 = 0.7609 slug # ft2

The unknowns are NA , FA , aG , and a.

Equations of Motion.

S+ �Fx = m(aG)x;
 FA = a 50 lb

32.2 ft>s2
 baG

 (1)

+ c �Fy = m(aG)y; NA - 50 lb = 0 (2)

c+ �MG = IGa;  35 lb # ft - 1.25 ft(FA) = (0.7609 slug # ft2)a (3)

A fourth equation is needed for a complete solution.

Kinematics (No Slipping). If this assumption is made, then

(c+) aG = (1.25 ft)a (4)

Solving Eqs. 1 to 4,

 NA = 50.0 lb   FA = 21.3 lb

 a = 11.0 rad>s2  aG = 13.7 ft>s2

This solution requires that no slipping occurs, i.e., FA … msNA . 

However, since 21.3 lb 7 0.3(50 lb) = 15 lb, the wheel slips as it rolls.

(Slipping). Equation 4 is not valid, and so FA = mkNA , or

 FA = 0.25NA (5)

Solving Eqs. 1 to 3 and 5 yields

NA = 50.0 lb  FA = 12.5 lb

 a = 25.5 rad>s2

  aG = 8.05 ft>s2 S  Ans.

EXAMPLE   17.13

G

(a)

1.25 ft

M � 35 lb�ft

A

35 lb�ft

G

(b)

1.25 ft

50 lb

FA

NA

maG

IG a

=

Fig. 17–21 
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The uniform slender pole shown in Fig. 17–22a has a mass of 100 kg. If 

the coefficients of static and kinetic friction between the end of the 

pole and the surface are ms = 0.3, and mk = 0.25, respectively, 

determine the pole’s angular acceleration at the instant the 400-N 

horizontal force is applied. The pole is originally at rest.

SOLUTION
Free-Body and Kinetic Diagrams. Figure 17–22b. The path of motion 

of the mass center G will be along an unknown curved path having a 

radius of curvature r, which is initially on a vertical line. However, 

there is no normal or y component of acceleration since the pole is 

originally at rest, i.e., vG = 0, so that (aG)y = vG
2 >r = 0. We will assume 

the mass center accelerates to the right and that the pole has a clockwise 

angular acceleration of A. The unknowns are NA , FA , aG , and a.

Equation of Motion.

S+ �Fx = m(aG)x;
 400 N - FA = (100 kg)aG

 (1)

+ c �Fy = m(aG)y; NA - 981 N = 0 (2)

c+ �MG = IGa;  FA(1.5 m) - (400 N)(1 m) = [ 1
12(100 kg)(3 m)2]a (3)

A fourth equation is needed for a complete solution.

Kinematics (No Slipping). With this assumption, point A acts as a 

“pivot” so that a is clockwise, then aG is directed to the right.

aG = arAG; aG = (1.5 m) a (4)

Solving Eqs. 1 to 4 yields

 NA = 981 N  FA = 300 N

 aG = 1 m>s2  a = 0.667 rad>s2

The assumption of no slipping requires FA … msNA . However, 

300 N 7 0.3(981 N) = 294 N and so the pole slips at A. 

(Slipping). For this case Eq. 4 does not apply. Instead the frictional 

equation FA = mkNA must be used. Hence,

 FA = 0.25NA (5)

Solving Eqs. 1 to 3 and 5 simultaneously yields

NA = 981 N FA = 245 N aG = 1.55 m>s2

 a = -0.428 rad>s2 = 0.428 rad>s2d  Ans.

EXAMPLE   17.14

0.5 m

400 N

3 m

(a)

A

1.5 m
400 N

1 m

G

FA

NA

981 N

(b)

(100 kg)aG

IGA
=

Fig. 17–22 
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The uniform 50-kg bar in Fig. 17–23a is held in the equilibrium position 

by cords AC and BD. Determine the tension in BD and the angular 

acceleration of the bar immediately after AC is cut.

SOLUTION
Free-Body and Kinetic Diagrams. Fig. 17–23b. There are four 

unknowns, TB , (aG)x , (aG)y , and a.

Equations of Motion.

S+ �Fx = m(aG)x; 0 = 50 kg (aG)x

 (aG)x = 0

+ c �Fy = m(aG)y;  TB - 50(9.81)N = -50 kg (aG)y (1)

a+ �MG = IGa; TB(1.5 m) = J 1

12
(50 kg)(3 m)2 Ra (2)

Kinematics. Since the bar is at rest just after the cable is cut, then its 

angular velocity and the velocity of point B at this instant are equal to 

zero. Thus (aB)n = vB
2 >rBD = 0. Therefore, aB only has a tangential 

component, which is directed along the x axis, Fig. 17–23c. Applying 

the relative acceleration equation to points G and B,

 aG = aB + A * rG/B - v2rG/B

-  (aG)yj = aBi + (ak) * (-1.5i) - 0

 -(aG)yj = aBi - 1.5aj

Equating the i and j components of both sides of this equation,

  0 = aB  

  (aG)y = 1.5a (3)

Solving Eqs. (1) through (3) yields

  a = 4.905 rad>s2 Ans.

  TB = 123 N  Ans.

  (aG)y = 7.36 m>s2  

EXAMPLE   17.15

C D

BA

 3 m

(a)

B

 1.5 m

50(9.81) N

(b)

TB

G

(50 kg)(aG)y

IGA

(50 kg)(aG)x

B

(c)

G

 � 0

(aG)x � 0

(aG)y

aB

 1.5 m

rG/B
� �

Fig. 17–23 
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F17–16. The 20@kg sphere rolls down the inclined plane 

without slipping. Determine the angular acceleration of the 

sphere and the acceleration of its mass center. 

0.15 m

30�

Prob. F17–16 

F17–17. The 200@kg spool has a radius of gyration about its 

mass center of kG = 300 mm. If the couple moment is 

applied to the spool and the coefficient of kinetic friction 

between the spool and the ground is mk = 0.2, determine 

the angular acceleration of the spool, the acceleration of G 

and the tension in the cable. 

0.4 m

0.6 m

BA

G M � 450 N�m

Prob. F17–17 

F17–18. The 12@kg slender rod is pinned to a small roller A 

that slides freely along the slot. If the rod is released from rest 

at u = 0�, determine the angular acceleration of the rod and 

the acceleration of the roller immediately after the release. 

A

0.6 m

u

Prob. F17–18 

F17–13. The uniform 60@kg slender bar is initially at rest 

on a smooth horizontal plane when the forces are applied. 

Determine the acceleration of the bar’s mass center and the 

angular acceleration of the bar at this instant. 

 20 N

80 N

0.75 m 0.5 m
1.75 m

Prob. F17–13 

F17–14. The 100@kg cylinder rolls without slipping on the 

horizontal plane. Determine the acceleration of its mass 

center and its angular acceleration. 

0.3 m
P � 200 N

Prob. F17–14 

F17–15. The 20@kg wheel has a radius of gyration about its 

center O of kO = 300 mm. When the wheel is subjected to 

the couple moment, it slips as it rolls. Determine the angular 

acceleration of the wheel and the acceleration of the wheel’s 

center O. The coefficient of kinetic friction between the 

wheel and the plane is mk = 0.5. 

O

0.4 m

M � 100 N�m

 

Prob. F17–15 

FUNDAMENTAL PROBLEMS
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PROBLEMS

17–90. If the disk in Fig. 17–19 rolls without slipping, show 

that when moments are summed about the instantaneous 

center of zero velocity, IC, it is possible to use the moment 

equation �MIC = IIC a, where IIC  represents the moment of 

inertia of the disk calculated about the instantaneous axis of 

zero velocity.

17–91. The 20-kg punching bag has a radius of gyration 

about its center of mass G of kG = 0.4 m. If it is initially at 

rest and is subjected to a horizontal force F = 30 N, 

determine the initial angular acceleration of the bag and the 

tension in the supporting cable AB.

B

A

1 m

0.6 m

0.3 m

F

G

Prob. 17–91

*17–92. The uniform 150-lb beam is initially at rest when 

the forces are applied to the cables. Determine the 

magnitude of the acceleration of the mass center and the 

angular acceleration of the beam at this instant.

BA

FA � 100 lb FB � 200 lb

60�

12 ft

Prob. 17–92

17–93. The slender 12-kg bar has a clockwise angular 

velocity of v = 2 rad>s when it is in the position shown. 

Determine its angular acceleration and the normal reactions 

of the smooth surface A and B at this instant.

B

A

3 m

60�

Prob. 17–93

17–94. The tire has a weight of 30 lb and a radius of 

gyration of kG = 0.6 ft. If the coefficients of static and 

kinetic friction between the tire and the plane are ms = 0.2 

and mk = 0.15, determine the tire’s angular acceleration as 

it rolls down the incline. Set u = 12�.

17–95. The tire has a weight of 30 lb and a radius of 

gyration of kG = 0.6 ft. If the coefficients of static and 

kinetic friction between the tire and the plane are ms = 0.2 

and mk = 0.15, determine the maximum angle u of the 

inclined plane so that the tire rolls without slipping.

1.25 ft

G

u

Probs. 17–94/95
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*17–96. The spool has a mass of 100 kg and a radius of 

gyration of kG = 0.3 m. If the coefficients of static and 

kinetic friction at A are ms = 0.2 and mk = 0.15, respectively, 

determine the angular acceleration of the spool if P = 50 N.

17–97. Solve Prob. 17–96 if the cord and force P = 50 N 

are directed vertically upwards.

17–98. The spool has a mass of 100 kg and a radius of 

gyration kG = 0.3 m. If the coefficients of static and kinetic 

friction at A are ms = 0.2 and mk = 0.15, respectively, 

determine the angular acceleration of the spool if 

P = 600 N.

P

250 mm 400 mm
G

A

Probs. 17–96/97/98

17–99. The 12-kg uniform bar is supported by a roller at A. 

If a horizontal force of F = 80 N is applied to the roller, 

determine the acceleration of the center of the roller at the 

instant the force is applied. Neglect the weight and the size 

of the roller.

F � 80 NA

2 m

Prob. 17–99

*17–100. A force of F = 10 N is applied to the 10-kg ring as 

shown. If slipping does not occur, determine the ring’s initial 

angular acceleration, and the acceleration of its mass center, G. 

Neglect the thickness of the ring.

17–101. If the coefficient of static friction at C is μs = 0.3, 

determine the largest force F that can be applied to the 5-kg 

ring, without causing it to slip. Neglect the thickness of  

the ring.

45�

30�

0.4 m

G

A

C

F

Probs. 17–100/101

17–102. The 25-lb slender rod has a length of 6 ft. Using a 

collar of negligible mass, its end A is confined to move along 

the smooth circular bar of radius 322 ft. End B rests on the 

floor, for which the coefficient of kinetic friction is mB = 0.4. 

If the bar is released from rest when u = 30°, determine the 

angular acceleration of the bar at this instant.

A

B

3  2 ft

6 ft

u

Prob. 17–102
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17–103. The 15-lb circular plate is suspended from a pin  

at A. If the pin is connected to a track which is given an 

acceleration aA = 5 ft>s2, determine the horizontal and 

vertical components of reaction at A and the angular 

acceleration of the plate. The plate is originally at rest.

G

A

aA

2 ft

Prob. 17–103

*17–104. If P = 30 lb, determine the angular acceleration 

of the 50-lb roller. Assume the roller to be a uniform 

cylinder and that no slipping occurs.

17–105. If the coefficient of static friction between 

the 50-lb roller and the ground is ms = 0.25, determine the 

maximum force P that can be applied to the handle, so that 

roller rolls on the ground without slipping. Also, find the 

angular acceleration of the roller. Assume the roller to be a 

uniform cylinder.

1.5 ft

P

30�

Probs. 17–104/105

17–106. The uniform bar of mass m and length L is 

balanced in the vertical position when the horizontal force 

P is applied to the roller at A. Determine the bar’s initial 

angular acceleration and the acceleration of its top point B.

17–107. Solve Prob. 17–106 if the roller is removed and the 

coefficient of kinetic friction at the ground is μk.

A

B

L

P

Probs. 17–106/107

*17–108. The semicircular disk having a mass of 10 kg is 

rotating at v = 4 rad>s at the instant u = 60�. If the 

coefficient of static friction at A is ms = 0.5, determine if 

the disk slips at this instant.

 4 (0.4)——— m
    3p

O

G

0.4 m

A

u

v

Prob. 17–108

17–109. The 500-kg concrete culvert has a mean radius of 

0.5 m. If the truck has an acceleration of 3 m>s2, determine 

the culvert’s angular acceleration. Assume that the culvert 

does not slip on the truck bed, and neglect its thickness.

4 m

0.5m

3 m/s2

Prob. 17–109



466  CHAPTER 17  PLANAR KINET ICS OF A RIG ID BODY: FORCE AND ACCELERAT ION

17

17–110. The 15-lb disk rests on the 5-lb plate. A cord is 

wrapped around the periphery of the disk and attached to 

the wall at B. If a torque M = 40 lb # ft is applied to the disk, 

determine the angular acceleration of the disk and the time 

needed for the end C of the plate to travel 3 ft and strike the 

wall. Assume the disk does not slip on the plate and the 

plate rests on the surface at D having a coefficient of kinetic 

friction of μk = 0.2. Neglect the mass of the cord.

A B

C
D 3 ft

M � 40 lb � ft

1.25 ft

Prob. 17–110

17–111. The semicircular disk having a mass of 10 kg is 

rotating at v = 4 rad>s at the instant u = 60�. If the 

coefficient of static friction at A is ms = 0.5, determine if 

the disk slips at this instant.

 4 (0.4)——— m
    3p

O

G

0.4 m

A

u

v

Prob. 17–111

*17–112. The circular concrete culvert rolls with an angular 

velocity of v = 0.5 rad>s when the man is at the position 

shown. At this instant the center of gravity of the culvert and 

the man is located at point G, and the radius of gyration 

about G is kG = 3.5 ft. Determine the angular acceleration 

of the culvert. The combined weight of the culvert and the 

man is 500 lb. Assume that the culvert rolls without slipping, 

and the man does not move within the culvert.

4 ft

0.5 ft

G
O

v

Prob. 17–112

17–113. The uniform disk of mass m is rotating with an 

angular velocity of v0 when it is placed on the floor. 

Determine the initial angular acceleration of the disk and 

the acceleration of its mass center. The coefficient of kinetic 

friction between the disk and the floor is μk.

17–114. The uniform disk of mass m is rotating with an 

angular velocity of v0 when it is placed on the floor. 

Determine the time before it starts to roll without slipping. 

What is the angular velocity of the disk at this instant? 

The coefficient of kinetic friction between the disk and the 

floor is μk.

v0

r

Probs. 17–113/114

17–115. A cord is wrapped around each of the two 10-kg 

disks. If they are released from rest determine the angular 

acceleration of each disk and the tension in the cord C. 

Neglect the mass of the cord. 

A

B

90 mm

90 mm

C

D

Prob. 17–115
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*17–116. The disk of mass m and radius r rolls without 

slipping on the circular path. Determine the normal force 

which the path exerts on the disk and the disk’s angular 

acceleration if at the instant shown the disk has an angular 

velocity of V. 

R

r

u

v

Prob. 17–116

17–117. The uniform beam has a weight W. If it is originally 

at rest while being supported at A and B by cables, 

determine the tension in cable A if cable B suddenly fails. 

Assume the beam is a slender rod.

A B

L––
4

L––
2

L––
4

Prob. 17–117

17–118. The 500-lb beam is supported at A and B when it 

is subjected to a force of 1000 lb as shown. If the pin support 

at A suddenly fails, determine the beam’s initial angular 

acceleration and the force of the roller support on the beam. 

For the calculation, assume that the beam is a slender rod so 

that its thickness can be neglected.

B A

8 ft 2 ft

1000 lb

3

4

5

Prob. 17–118

17–119. The solid ball of radius r and mass m rolls without 

slipping down the 60° trough. Determine its angular 

acceleration.

30�

45�

30�

Prob. 17–119

*17–120. By pressing down with the finger at B, a thin ring 

having a mass m is given an initial velocity v0 and a backspin V0 

when the finger is released. If the coefficient of kinetic 

friction between the table and the ring is μk, determine the 

distance the ring travels forward before backspinning stops.

B

A

v0

v0

r

Prob. 17–120
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C17–3. How can you tell the driver is accelerating this 

SUV? To explain your answer, draw the free-body and 

kinetic diagrams. Here power is supplied to the rear wheels. 

Would the photo look the same if power were supplied to 

the front wheels? Will the accelerations be the same? Use 

appropriate numerical values to explain your answers. 

Prob. C17–3 (© R.C. Hibbeler)

C17–4. Here is something you should not try at home, at 

least not without wearing a helmet! Draw the free-body and 

kinetic diagrams and show what the rider must do to 

maintain this position. Use appropriate numerical values to 

explain your answer.

Prob. C17–4 (© R.C. Hibbeler)

C17–1. The truck is used to pull the heavy container. To be 

most effective at providing traction to the rear wheels at A, 

is it best to keep the container where it is or place it at the 

front of the trailer? Use appropriate numerical values to 

explain your answer.

A

Prob. C17–1 (© R.C. Hibbeler)

C17–2. The tractor is about to tow the plane to the right. Is 

it possible for the driver to cause the front wheel of the 

plane to lift off the ground as he accelerates the tractor?  

Draw the free-body and kinetic diagrams and explain 

algebraically (letters) if and how this might be possible.

Prob. C17–2 (© R.C. Hibbeler)

CONCEPTUAL PROBLEMS
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Moment of Inertia

The moment of inertia is a measure of the 

resistance of a body to a change in its 

angular velocity. It is defined by 

I = 1r2dm and will be different for each 

axis about which it is computed. 

I = IG + md2

Planar Equations of Motion

The equations of motion define the 

translational, and rotational motion of a 

rigid body. In order to account for all of 

the terms in these equations, a free-body 

diagram should always accompany their 

application, and for some problems, it may 

also be convenient to draw the kinetic 

diagram which shows maG and  IGA.

r

G

IG

dm

m

I

d

 �Fn = m(aG)n = mv2rG

 �Ft = m(aG)t = marG

 �MG = IGa or  �MO = IOa

Rotation About a Fixed Axis

 �Fx = m(aG)x

 �Fy = m(aG)y

 �MG = IGa or  �MP = �(mk)P

General Plane Motion17

Many bodies are composed of simple 

shapes. If this is the case, then tabular 

values of I can be used, such as the ones 

given on the inside back cover of this 

book.  To obtain the moment of inertia of a 

composite body about any specified axis, 

the moment of inertia of each part is 

determined about the axis and the results 

are added together. Doing this often 

requires use of the parallel-axis theorem.

 �Fx = m(aG)x

 �Fy = m(aG)y

 �MG = 0

Rectilinear translation

 �Fn = m(aG)n

 �Ft = m(aG)t

 �MG = 0

Curvilinear translation

CHAPTER REVIEW
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R17–3. The car has a mass of 1.50 Mg and a mass center  

at G. Determine the maximum acceleration it can have if 

power is supplied only to the rear wheels. Neglect the mass 

of the wheels in the calculation, and assume that the wheels 

that do not receive power are free to roll. Also, assume that 

slipping of the powered wheels occurs, where the coefficient 

of kinetic friction is mk = 0.3.

1.6 m 1.3 mB A

0.4 m
G

Prob. R17–3

R17–4. A 20-kg roll of paper, originally at rest, is pin-

supported at its ends to bracket AB. The roll rest against a 

wall for which the coefficient of kinetic friction at C is  

mC = 0.3. If a force of 40 N is applied uniformly to the end of 

the sheet, determine the initial angular acceleration of the 

roll and the tension in the bracket as the paper unwraps.  

For the calculation, treat the roll as a cylinder.

12

5

13

A

B

120 mm

60� P � 40 N

C a

Prob. R17–4

R17–1. The handcart has a mass of 200 kg and center of 

mass at G. Determine the normal reactions at each of the 

wheels at A and B if a force P = 50 N is applied to  

the handle. Neglect the mass and rolling resistance of  

the wheels.

0.3 m 0.4 m
0.2 m

0.2 m

0.5 m

60�

P

A B

G

Prob. R17–1

R17–2. The two 3-lb rods EF and HI are fixed (welded) to 

the link AC at E. Determine the internal axial force Ex, 

shear force Ey, and moment ME, which the bar AC exerts on 

FE at E if at the instant u = 30° link AB has an angular 

velocity v = 5 rad>s and an angular acceleration  

a = 8 rad>s2 as shown.

u � 30�

a � 8 rad/s2

v � 5 rad/s
x

E

3 ft

3 ft

D

B

F

A

C
I

H

2 ft

2 ft

y

Prob. R17–2

REVIEW PROBLEMS
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R17–7. The spool and wire wrapped around its core have a 

mass of 20 kg and a centroidal radius of gyration  

kG = 250 mm. if the coefficient of kinetic friction at the 

ground is mB = 0.1, determine the angular acceleration of 

the spool when the 30-N # m couple moment is applied.

30 N�m

200 mm

400 mm
G

B

Prob. R17–7

R17–8. Determine the backspin V which should be given 

to the 20-lb ball so that when its center is given an initial 

horizontal velocity vG = 20 ft>s it stops spinning and 

translating at the same instant. The coefficient of kinetic 

friction is mA = 0.3.

0.5 ft

G

A

vG � 20 ft/s

v

Prob. R17–8

R17–5. At the instant shown, two forces act on the 30-lb 

slender rod which is pinned at O. Determine the magnitude 

of force F and the initial angular acceleration of the rod so 

that the horizontal reaction which the pin exerts on the rod 

is 5 lb directed to the right.

O

3 ft

3 ft

20 lb

2 ft

F

Prob. R17–5

R17–6. The pendulum consists of a 30-lb sphere and a 

10-lb slender rod. Compute the reaction at the pin O just 

after the cord AB is cut.

2 ft

O

A

B

1 ft

Prob. R17–6



Chapter 18

Roller coasters must be able to coast over loops and through turns, and have 
enough energy to do so safely. Accurate calculation of this energy must 

account for the size of the car as it moves along the track.

(© Arinahabich/Fotolia)



Planar Kinetics 
of a Rigid Body: 
Work and Energy

CHAPTER OBJECTIVES

■ To develop formulations for the kinetic energy of a body, and 
define the various ways a force and couple do work.

■ To apply the principle of work and energy to solve rigid–body 
planar kinetic problems that involve force, velocity, and 
displacement.

■ To show how the conservation of energy can be used to solve 
rigid–body planar kinetic problems.

18.1 Kinetic Energy

In this chapter we will apply work and energy methods to solve planar 

motion problems involving force, velocity, and displacement. But first it 

will be necessary to develop a means of obtaining the body’s kinetic 

energy when the body is subjected to translation, rotation about a fixed 

axis, or general plane motion.

To do this we will consider the rigid body shown in Fig. 18–1, which is 

represented here by a slab moving in the inertial x–y reference plane. An 

arbitrary ith particle of the body, having a mass dm, is located a distance r 
from the arbitrary point P. If at the instant shown the particle has a 
velocity vi , then the particle’s kinetic energy is Ti =

1
2  dm vi

2.

y

x

x

yr

P

i

vP

vi

V

Fig. 18–1 
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The kinetic energy of the entire body is determined by writing similar 

expressions for each particle of the body and integrating the results, i.e.,

T =
1

2 Lm
dm vi

2

This equation may also be expressed in terms of the velocity of point P. 

If the body has an angular velocity V, then from Fig. 18–1 we have

  vi = vP + vi>P
  = (vP)x i + (vP)y j + vk * (xi + yj)

  = [(vP)x - vy]i + [(vP)y + vx]j

The square of the magnitude of vi is thus

  vi
# vi = vi

2 = [(vP)x - vy]2 + [(vP)y + vx]2

  = (vP)x
2 - 2(vP)xvy + v2y2 + (vP)y

2 + 2(vP)yvx + v2x2

  = vP
2 - 2(vP)xvy + 2(vP)yvx + v2r2

Substituting this into the equation of kinetic energy yields

y

x

x

yr

P

i

vP

vi

V

Fig. 18–1 (repeated)

T =
1

2
aLm

dmbvP
2 - (vP)xvaLm

y dmb + (vP)yvaLm
x dmb +

1

2
 v2aLm

r2 dmb
The first integral on the right represents the entire mass m of the body. Since 

ym = 1y dm and xm = 1x dm, the second and third integrals locate the 

body’s center of mass G with respect to P. The last integral represents the 

body’s moment of inertia IP , computed about the z axis passing through 

point P. Thus,

 T = 1
2 mvP

2 - (vP)xvym + (vP)yvxm + 1
2 IPv

2 (18–1)

As a special case, if point P coincides with the mass center G of the 

body, then y = x = 0, and therefore

 T = 1
2 mvG

2 + 1
2 IGv

2 (18–2)

Both terms on the right side are always positive, since vG and v are 

squared. The first term represents the translational kinetic energy, 

referenced from the mass center, and the second term represents the 

body’s rotational kinetic energy about the mass center.



18

 18.1 KINETIC ENERGY 475

Translation. When a rigid body of mass m is subjected to either 

rectilinear or curvilinear translation, Fig. 18–2, the kinetic energy due to 

rotation is zero, since V = 0. The kinetic energy of the body is therefore

 T = 1
2 mvG

2  (18–3)

Rotation about a Fixed Axis.  When a rigid body rotates about 
a fixed axis passing through point O, Fig. 18–3, the body has both 

translational and rotational kinetic energy so that

 T = 1
2 mvG

2 + 1
2 IGv

2  (18–4)

The body’s kinetic energy may also be formulated for this case by noting 

that vG = rGv, so that T = 1
2(IG + mrG

2 )v2. By the parallel–axis theorem, 

the terms inside the parentheses represent the moment of inertia IO of the 

body about an axis perpendicular to the plane of motion and passing 

through point O. Hence,* 

 T = 1
2 IOv

2  (18–5)

From the derivation, this equation will give the same result as Eq. 18–4, 

since it accounts for both the translational and rotational kinetic energies 

of the body.

General Plane Motion.  When a rigid body is subjected to general 

plane motion, Fig. 18–4, it has an angular velocity V and its mass center 

has a velocity vG . Therefore, the kinetic energy is

 T = 1
2 mvG

2 + 1
2 IGv

2  (18–6)

This equation can also be expressed in terms of the body’s motion about 

its instantaneous center of zero velocity i.e.,

 T = 1
2IICv

2  (18–7)

where IIC is the moment of inertia of the body about its instantaneous 

center. The proof is similar to that of Eq. 18–5. (See Prob. 18–1.)

vG � v

G

Translation

v

Fig. 18–2 

vG

G

V

rG
O

Rotation About a Fixed Axis

Fig. 18–3 

vG

G

General Plane Motion

V

Fig. 18–4 

*The similarity between this derivation and that of �MO = IOa, should be noted. Also the 

same result can be obtained directly from Eq. 18–1 by selecting point P at O, realizing that 

vO = 0.
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System of Bodies. Because energy is a scalar quantity, the total 

kinetic energy for a system of connected rigid bodies is the sum of the 

kinetic energies of all its moving parts. Depending on the type of motion, 

the kinetic energy of each body is found by applying Eq. 18–2 or the 

alternative forms mentioned above.

18.2 The Work of a Force

Several types of forces are often encountered in planar kinetics problems 

involving a rigid body. The work of each of these forces has been presented 

in Sec. 14.1 and is listed below as a summary.

Work of a Variable Force. If an external force F acts on a body, 

the work done by the force when the body moves along the path s, 

Fig. 18–5, is

 UF = LF # dr = Ls
F cos u ds  (18–8)

Here u is the angle between the “tails” of the force and the differential 

displacement. The integration must account for the variation of the force’s 

direction and magnitude.

The total kinetic energy of this soil 
compactor consists of the kinetic energy 
of the body or frame of the machine due 
to its translation, and the translational and 
rotational kinetic energies of the roller 
and the wheels due to their general plane 
motion. Here we exclude the additional 
kinetic energy developed by the moving 
parts of the engine and drive train.  
(© R.C. Hibbeler)

s

F

F
s

F

F

u

u

Fig. 18–5 

s

Fc

Fc

Fc cos u

Fc cos u

u

u

Fig. 18–6 

Work of a Constant Force. If an external force Fc acts on a 

body, Fig. 18–6, and maintains a constant magnitude Fc and constant 

direction u, while the body undergoes a translation s, then the above 

equation can be integrated, so that the work becomes

 UFc
= (Fc cos u)s  (18–9)
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Work of a Weight.  The weight of a body does work only when the 

body’s center of mass G undergoes a vertical displacement �y. If this 

displacement is upward, Fig. 18–7, the work is negative, since the weight is 

opposite to the displacement.

 UW = -W �y  (18–10)

Likewise, if the displacement is downward (- �y) the work becomes 

positive. In both cases the elevation change is considered to be small so 

that W, which is caused by gravitation, is constant.

Work of a Spring Force. If a linear elastic spring is attached to a 

body, the spring force Fs = ks acting on the body does work when the 

spring either stretches or compresses from s1 to a farther position s2 . In 

both cases the work will be negative since the displacement of the body is 

in the opposite direction to the force, Fig. 18–8. The work is

 Us = - 11
2 ks2

2 - 1
2 ks1

22  (18–11)

where � s2 � 7 � s1 � .

Forces That Do No Work.  There are some external forces that 

do no work when the body is displaced. These forces act either at fixed 
points on the body, or they have a direction perpendicular to their 
displacement. Examples include the reactions at a pin support about 

which a body rotates, the normal reaction acting on a body that moves 

along a fixed surface, and the weight of a body when the center of 

gravity of the body moves in a horizontal plane, Fig. 18–9. A frictional 

force Ff  acting on a round body as it rolls without slipping over a rough 

surface also does no work.*  This is because, during any instant of time 
dt, Ff  acts at a point on the body which has zero velocity (instantaneous 

center, IC) and so the work done by the force on the point is zero. In 

other words, the point is not displaced in the direction of the force 

during this instant. Since Ff  contacts successive points for only an 

instant, the work of Ff  will be zero.

W

W

G

G

�y

s

Fig. 18–7 

s1

s

s2

Fsk

Unstretched
position of
spring, s � 0

Fig. 18–8 

r

Ff

N

W

IC

V

Fig. 18–9 *The work done by a frictional force when the body slips is discussed in Sec. 14.3.
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18.3 The Work of a Couple Moment

Consider the body in Fig. 18–10a, which is subjected to a couple moment 

M = Fr. If the body undergoes a differential displacement, then the 

work done by the couple forces can be found by considering the 

displacement as the sum of a separate translation plus rotation. When 

the body translates, the work of each force is produced only by the 

component of displacement along the line of action of the forces dst ,  

Fig. 18–10b. Clearly the “positive” work of one force cancels the 

“negative” work of the other. When the body undergoes a differential 

rotation du about the arbitrary point O, Fig. 18–10c, then each force 

undergoes a displacement dsu = (r>2) du in the direction of the force. 

Hence, the total work done is

  dUM = Fa r

2
 dub + Fa r

2
 dub = (Fr) du

  = M du

The work is positive when M and dU have the same sense of direction and 

negative if these vectors are in the opposite sense.

When the body rotates in the plane through a finite angle u measured 

in radians, from u1 to u2 , the work of a couple moment is therefore 

 UM = L
u2

u1

M du  (18–12)

If the couple moment M has a constant magnitude, then

 UM = M(u2 - u1)  (18–13)

(a)

M

u

r

(b)

F

F

Translation

dst

(c)

F

F

Odu

Rotation

dsu

dsu
du

r
2

r
2

Fig. 18–10 
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EXAMPLE   18.1

The bar shown in Fig. 18–11a has a mass of 10 kg and is subjected to a 

couple moment of M = 50 N # m and a force of P = 80 N, which is 

always applied perpendicular to the end of the bar. Also, the spring 

has an unstretched length of 0.5 m and remains in the vertical position 

due to the roller guide at B. Determine the total work done by all the 

forces acting on the bar when it has rotated downward from u = 0� to 

u = 90�.

SOLUTION
First the free-body diagram of the bar is drawn in order to account for 

all the forces that act on it, Fig. 18–11b.

Weight W. Since the weight 10(9.81) N = 98.1 N is displaced 

downward 1.5 m, the work is

 UW = 98.1 N(1.5 m) = 147.2 J

Why is the work positive?

Couple Moment M. The couple moment rotates through an angle 

of u = p>2 rad. Hence,

 UM = 50 N # m(p>2) = 78.5 J

Spring Force Fs. When u = 0� the spring is stretched (0.75 m - 0.5 m)

=  0.25 m, and when u = 90�, the stretch is (2 m + 0.75 m) - 0.5 m =  

2.25 m. Thus,

 Us = - 31
2(30 N>m)(2.25 m)2 - 1

2(30 N>m)(0.25 m)24 = -75.0 J

By inspection the spring does negative work on the bar since Fs acts in 

the opposite direction to displacement. This checks with the result.

Force P. As the bar moves downward, the force is displaced through 

a distance of (p>2)(3 m) = 4.712 m. The work is positive. Why?

 UP = 80 N(4.712 m) = 377.0 J

Pin Reactions. Forces Ax and Ay do no work since they are not 

displaced.

Total Work. The work of all the forces when the bar is displaced is 

thus

 U = 147.2 J + 78.5 J - 75.0 J + 377.0 J = 528 J Ans.

0.75 m

A

B

2 m

1 m

k � 30 N/m

M = 50 N�m

P � 80 N

(a)

u

1.5 m

1 m
0.5 m

98.1 N

P � 80 N
Fs

Ay

Ax

(b)

50 N�mu

Fig. 18–11 
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18.4 Principle of Work and Energy

By applying the principle of work and energy developed in Sec. 14.2 to 

each of the particles of a rigid body and adding the results algebraically, 

since energy is a scalar, the principle of work and energy for a rigid body 

becomes

 T1 + �U192 = T2  (18–14)

This equation states that the body’s initial translational and rotational 

kinetic energy, plus the work done by all the external forces and couple 

moments acting on the body as the body moves from its initial to its final 

position, is equal to the body’s final translational and rotational kinetic 

energy. Note that the work of the body’s internal forces does not have to 

be considered. These forces occur in equal but opposite collinear pairs, so 

that when the body moves, the work of one force cancels that of its 

counterpart. Furthermore, since the body is rigid, no relative movement 
between these forces occurs, so that no internal work is done.

When several rigid bodies are pin connected, connected by inextensible 

cables, or in mesh with one another, Eq. 18–14 can be applied to the entire 
system of connected bodies. In all these cases the internal forces, which 

hold the various members together, do no work and hence are eliminated 

from the analysis.

The work of the torque or moment developed by the 
driving gears on the motors is transformed into kinetic 
energy of rotation of the drum. (© R.C. Hibbeler)

The counterweight on this bascule bridge 
does positive work as the bridge is lifted and 
thereby cancels the negative work done by 
the weight of the bridge. (© R.C. Hibbeler)
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Procedure for Analysis

The principle of work and energy is used to solve kinetic problems 

that involve velocity, force, and displacement, since these terms are 

involved in the formulation. For application, it is suggested that the 

following procedure be used.

Kinetic Energy (Kinematic Diagrams).
  The kinetic energy of a body is made up of two parts. Kinetic 

energy of translation is referenced to the velocity of the mass 

center, T = 1
2 mvG

2 , and kinetic energy of rotation is determined 

using the moment of inertia of the body about the mass center, 

T = 1
2 IGv

2. In the special case of rotation about a fixed axis (or 

rotation about the IC), these two kinetic energies are combined 

and can be expressed as T = 1
2 IOv

2, where IO is the moment of 

inertia about the axis of rotation.

  Kinematic diagrams for velocity may be useful for determining 

vG and v or for establishing a relationship between vG and v.* 

Work (Free–Body Diagram).
  Draw a free–body diagram of the body when it is located at an 

intermediate point along the path in order to account for all the 

forces and couple moments which do work on the body as it 

moves along the path.

  A force does work when it moves through a displacement in the 

direction of the force.

  Forces that are functions of displacement must be integrated to 

obtain the work. Graphically, the work is equal to the area under 

the force–displacement curve.

  The work of a weight is the product of its magnitude and the 

vertical displacement, UW = Wy. It is positive when the weight 

moves downwards.

  The work of a spring is of the form Us = 1
2 ks2, where k is the 

spring stiffness and s is the stretch or compression of the spring.

  The work of a couple is the product of the couple moment and 

the angle in radians through which it rotates, UM = Mu.

  Since algebraic addition of the work terms is required, it is important 

that the proper sign of each term be specified. Specifically, work is 

positive when the force (couple moment) is in the same direction as 

its displacement (rotation); otherwise, it is negative.

Principle of Work and Energy.
  Apply the principle of work and energy, T1 + �U192 = T2 . Since 

this is a scalar equation, it can be used to solve for only one 

unknown when it is applied to a single rigid body.

*A brief review of Secs. 16.5 to 16.7 may prove helpful when solving problems, since 

computations for kinetic energy require a kinematic analysis of velocity.



482  CHAPTER 18  PLANAR KINET ICS OF A RIG ID BODY: WORK AND ENERGY

18

The 30-kg disk shown in Fig. 18–12a is pin supported at its center. 

Determine the angle through which it must rotate to attain an angular 

velocity of 2 rad>s starting from rest. It is acted upon by a constant 

couple moment M = 5 N # m. The spring is orginally unstretched and 

its cord wraps around the rim of the disk.

EXAMPLE   18.2

0.2 m

O

M � 5 N�m

(a)

k � 10 N/m

0.2 m

M � 5 N�m

(b)

O

294.3 N

Oy

Ox

Fs

Fig. 18–12 

SOLUTION
Kinetic Energy. Since the disk rotates about a fixed axis, and it is 

initially at rest, then

  T1 = 0

  T2 = 1
2 IOv2

2 = 1
2 31

2(30 kg)(0.2 m)24(2 rad>s)2 = 1.2 J

Work (Free–Body Diagram).  As shown in Fig. 18–12b, the pin 

reactions Ox and Oy and the weight (294.3 N) do no work, since they 

are not displaced. The couple moment, having a constant magnitude, 

does positive work UM = Mu as the disk rotates through a clockwise 

angle of u rad, and the spring does negative work Us = -1
2 ks2.

Principle of Work and Energy.

  5T16 + 5�U1 -26 = 5T26
  5T16 + eMu - 1

2 ks2 f = 5T26
  506 + e (5 N # m)u -

1

2
 (10 N>m)[u(0.2 m)]2 f = 51.2 J6

  - 0.2u2 + 5u - 1.2 = 0

Solving this quadratic equation for the smallest positive root,

  u = 0.2423 rad = 0.2423 rada 180�

p rad
b = 13.9� Ans.
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EXAMPLE  18.3

The wheel shown in Fig. 18–13a weighs 40 lb and has a radius of 

gyration kG = 0.6 ft about its mass center G. If it is subjected to a 

clockwise couple moment of 15 lb # ft and rolls from rest without 

slipping, determine its angular velocity after its center G moves 0.5 ft. 

The spring has a stiffness k = 10 lb>ft and is initially unstretched 

when the couple moment is applied.

SOLUTION
Kinetic Energy (Kinematic Diagram).  Since the wheel is initially 

at rest,

T1 = 0

The kinematic diagram of the wheel when it is in the final position is 

shown in Fig. 18–13b. The final kinetic energy is determined from

  T2 = 1
2 IICv2

2

  =
1

2
 c 40 lb

32.2 ft>s2
 (0.6 ft)2 +  ¢ 40 lb

32.2 ft>s2
≤(0.8 ft)2 dv2

2

  T2 = 0.6211 v2
2

Work (Free–Body Diagram).  As shown in Fig. 18–13c, only the 

spring force Fs and the couple moment do work. The normal force 

does not move along its line of action and the frictional force does no 
work, since the wheel does not slip as it rolls.

The work of Fs is found using Us = -1
2 ks2. Here the work is negative 

since Fs is in the opposite direction to displacement. Since the wheel 

does not slip when the center G moves 0.5 ft, then the wheel rotates 

u = sG>rG>IC = 0.5 ft>0.8 ft = 0.625 rad, Fig. 18–13b. Hence, the 

spring stretches s = ur
A>IC = (0.625 rad)(1.6 ft) = 1 ft.

Principle of Work and Energy.

  5T16 + 5�U1 -26 = 5T26
  5T16 + 5Mu - 1

2 ks26 = 5T26
 506 + e15 lb # ft(0.625 rad) -

1

2
 (10 lb>ft)(1 ft)2 f = 50.6211 v2

2 ft # lb6
 v2 = 2.65 rad>s b Ans.

k � 10 lb/ft A

G

0.8 ft
15 lb�ft

(a)

G

0.8 ft

(b)

1.6 ft

(vG)2

A

IC

V2

Fs

40 lb

(c)

15 lb�ft

FB

NB

Fig. 18–13 
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EXAMPLE  18.4

The 700-kg pipe is equally suspended from the two tines of the fork 

lift shown in the photo. It is undergoing a swinging motion such that 

when u = 30� it is momentarily at rest. Determine the normal and 

frictional forces acting on each tine which are needed to support the 

pipe at the instant u = 0�. Measurements of the pipe and the 

suspender are shown in Fig. 18–14a. Neglect the mass of the suspender 

and the thickness of the pipe.

G

O

0.15 m

(a)

0.4 m

u

 
Fig. 18–14

SOLUTION
We must use the equations of motion to find the forces on the tines 

since these forces do no work. Before doing this, however, we will 

apply the principle of work and energy to determine the angular 

velocity of the pipe when u = 0�.

Kinetic Energy (Kinematic Diagram). Since the pipe is originally 

at rest, then

T1 = 0

The final kinetic energy may be computed with reference to either the 

fixed point O or the center of mass G. For the calculation we will 

consider the pipe to be a thin ring so that IG = mr2. If point G is 

considered, we have

  T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

  = 1
2(700 kg)[(0.4 m)v2]

2 + 1
2[700 kg(0.15 m)2]v2

2

  = 63.875v2
2

If point O is considered then the parallel-axis theorem must be used 

to determine IO . Hence,

  T2 = 1
2 IOv2

2 = 1
2[700 kg(0.15 m)2 + 700 kg(0.4 m)2]v2

2

  = 63.875v2
2

(© R.C. Hibbeler)
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Work (Free-Body Diagram). Fig. 18–14b. The normal and frictional 

forces on the tines do no work since they do not move as the pipe 

swings. The weight does positive work since the weight moves downward 

through a vertical distance �y = 0.4 m - 0.4 cos 30� m = 0.05359 m.

Principle of Work and Energy.

  5T16 + 5�U1 -26 = 5T26
  506 + 5700(9.81) N(0.05359 m)6 = 563.875v2

26
  v2 = 2.400 rad>s
Equations of Motion. Referring to the free-body and kinetic 

diagrams shown in Fig. 18–14c, and using the result for v2, we have

d+ �Ft = m(aG)t; FT = (700 kg)(aG)t

+ c �Fn = m(aG)n; NT - 700(9.81) N = (700 kg)(2.400 rad>s)2(0.4 m)

c+ �MO = IOa; 0 = [(700 kg)(0.15 m)2 + (700 kg)(0.4 m)2]a

Since (aG)t = (0.4 m)a, then

  a = 0, (aG)t = 0

  FT = 0

  NT = 8.480 kN

There are two tines used to support the load, therefore

 F T
= = 0  Ans.

 NT
= =

8.480 kN

2
= 4.24 kN Ans.

NOTE: Due to the swinging motion the tines are subjected to a greater 

normal force than would be the case if the load were static, in which 

case NT
= = 700(9.81) N>2 = 3.43 kN.

G

O

700 (9.81) N

(b)

0.4 m

FT

NT

u

�y

G

O

700 (9.81) N

(c)

0.4 m

FT

NT

G

O

700 kg(aG)t

700 kg(aG)n 0.4 m
=

IGA

Fig. 18–14 
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EXAMPLE  18.5

The 10–kg rod shown in Fig. 18–15a is constrained so that its ends 

move along the grooved slots. The rod is initially at rest when u = 0�. 
If the slider block at B is acted upon by a horizontal force P = 50 N, 

determine the angular velocity of the rod at the instant u = 45�. 
Neglect friction and the mass of blocks A and B.

SOLUTION
Why can the principle of work and energy be used to solve this problem?

Kinetic Energy (Kinematic Diagrams). Two kinematic diagrams of 

the rod, when it is in the initial position 1 and final position 2, are 

shown in Fig. 18–15b. When the rod is in position 1, T1 = 0 since 

(vG)1 = V1 = 0. In position 2 the angular velocity is V2 and the 

velocity of the mass center is (vG)2 . Hence, the kinetic energy is

  T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

  = 1
2(10 kg)(vG)2

2 + 1
2 3 1

12(10 kg)(0.8 m)24v2
2

  = 5(vG)2
2 + 0.2667(v2)

2

The two unknowns (vG)2 and v2 can be related from the instantaneous 

center of zero velocity for the rod. Fig. 18–15b. It is seen that as A 

moves downward with a velocity (vA)2 , B moves horizontally to the 

left with a velocity (vB)2 , Knowing these directions, the IC is located as 

shown in the figure. Hence,

  (vG)2 = rG>ICv2 = (0.4 tan 45� m)v2

  = 0.4v2

Therefore,

T2 = 0.8v2
2 + 0.2667v2

2 = 1.0667v2
2

Of course, we can also determine this result using T2 = 1
2 IICv2

2.

Work (Free–Body Diagram).  Fig. 18–15c. The normal forces NA 

and NB do no work as the rod is displaced. Why? The 98.1-N weight is 

displaced a vertical distance of �y = (0.4 - 0.4 cos 45�) m; whereas 

the 50-N force moves a horizontal distance of s = (0.8 sin 45�) m. 

Both of these forces do positive work. Why?

Principle of Work and Energy.
  5T16 + 5�U1 -26 = 5T26
  5T16 + 5W �y + Ps6 = 5T26
 506 + 598.1 N(0.4 m - 0.4 cos 45� m) + 50 N(0.8 sin 45� m)6
 = 51.0667v2

2 J6
Solving for v2 gives

 v2 = 6.11 rad>sb Ans.

(a)

P � 50 N

B

u
G

A

0.4 m

0.4 m

(b)

(vB)2

B

G

A

0.4 m

0.4 m45�

45�

IC

rG/IC

(vG)2

(vA)2

2

1

G(vG)1 � 0

v1 � 0

V2

(0.4 cos 45�) m

(c)

A

0.4 m

0.4 m

45�

NA

NB

50 N B

98.1 N

(0.8 sin 45�) m

Fig. 18–15 
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PRELIMINARY PROBLEM

P18–1. Determine the kinetic energy of the 100-kg object.

100 kg

3 rad/s

(a)

2 rad/s

4 m2 m

O

(b)

100 kg

2 m

2 rad/s

No slipping

(c)

100 kg

O

3 m

2 rad/s

100 kg

30�

(d)

2 m

4 rad/s

(e)

100 kg

2 m

100 kg

4 rad/s

3 m

(f)

Prob. P18–1
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FUNDAMENTAL PROBLEMS

F18–1. The 80@kg wheel has a radius of gyration about its 

mass center O of kO = 400 mm. Determine its angular 

velocity after it has rotated 20 revolutions starting from rest. 

F18–4. The 50@kg wheel is subjected to a force of 50 N. If 

the wheel starts from rest and rolls without slipping, determine 

its angular velocity after it has rotated 10 revolutions.  

The radius of gyration of the wheel about its mass center G 

is kG = 0.3 m. 

G

0.4 m

M � 50 N�m

Prob. F18–6 

F18–6. The 20@kg wheel has a radius of gyration about its 

center G of kG = 300 mm. When it is subjected to a couple 

moment of M = 50 N # m, it rolls without slipping. Determine 

the angular velocity of the wheel after its mass center G has 

traveled through a distance of sG = 20 m, starting from rest. 

30 N

20 N

0.5 m 0.5 m 0.5 m1.5 m

 20 N�m
O

Prob. F18–5 

F18–5. If the uniform 30@kg slender rod starts from rest at 

the position shown, determine its angular velocity after it 

has rotated 4 revolutions. The forces remain perpendicular 

to the rod. 

�

30�

Prob. F18–4 

A

5 m
4 m

B

P � 600 N

Prob. F18–3 

F18–3. The uniform 50@kg slender rod is at rest in the 

position shown when P = 600 N is applied. Determine the 

angular velocity of the rod when the rod reaches the vertical 

position.

O

5 ft

M�100 lb�ft

u

Prob. F18–2 

F18–2. The uniform 50@lb slender rod is subjected to a 

couple moment of M = 100 lb # ft. If the rod is at rest when 

u = 0�, determine its angular velocity when u = 90�. 

0.6 m P � 50 N

O

Prob. F18–1 

18
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PROBLEMS

18–1. At a given instant the body of mass m has an angular 

velocity V and its mass center has a velocity vG. Show that 

its kinetic energy can be represented as T = 1
2 IICv

2, where 

IIC is the moment of inertia of the body determined about 

the instantaneous axis of zero velocity, located a distance 

rG>IC from the mass center as shown.

IC

G

rG/IC

vG v

Prob. 18–1

18–2. The wheel is made from a 5-kg thin ring and two 

2-kg slender rods. If the torsional spring attached to the 

wheel’s center has a stiffness k = 2 N # m>rad, and the wheel 

is rotated until the torque M = 25 N # m is developed, 

determine the maximum angular velocity of the wheel if it 

is released from rest.

18–3. The wheel is made from a 5-kg thin ring and two 

2-kg slender rods. If the torsional spring attached to the 

wheel’s center has a stiffness k = 2 N # m>rad, so that the 

torque on the center of the wheel is M = (2u) N # m, where 

u is in radians, determine the maximum angular velocity of 

the wheel if it is rotated two revolutions and then released 

from rest.

M

O
0.5 m

Probs. 18–2/3

*18–4. A force of P = 60 N is applied to the cable, which 

causes the 200-kg reel to turn since it is resting on the two 

rollers A and B of the dispenser. Determine the angular 

velocity of the reel after it has made two revolutions starting 

from rest. Neglect the mass of the rollers and the mass of 

the cable. Assume the radius of gyration of the reel about 

its center axis remains constant at kO = 0.6 m.

0.75 m

0.6 m

1 m

P

A

O

B

Prob. 18–4

18–5. A force of P = 20 N is applied to the cable, which 

causes the 175-kg reel to turn since it is resting on the two 

rollers A and B of the dispenser. Determine the angular 

velocity of the reel after it has made two revolutions starting 

from rest. Neglect the mass of the rollers and the mass of 

the cable. The radius of gyration of the reel about its center 

axis is kG = 0.42 m.

18–6. A force of P = 20 N is applied to the cable, which causes 

the 175-kg reel to turn without slipping on the two rollers A 

and B of the dispenser. Determine the angular velocity of the 

reel after it has made two revolutions starting from rest. Neglect 

the mass of the cable. Each roller can be considered as an 18-kg 

cylinder, having a radius of 0.1 m. The radius of gyration of the 

reel about its center axis is kG = 0.42 m.

500 mm

250 mm

30�

P

A

G

B

400 mm

Probs. 18–5/6
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18–7. The double pulley consists of two parts that are 

attached to one another. It has a weight of 50 lb and a 

centroidal radius of gyration of kO = 0.6 ft and is turning 

with an angular velocity of 20 rad>s clockwise. Determine 

the kinetic energy of the system. Assume that neither cable 

slips on the pulley.

*18–8. The double pulley consists of two parts that are 

attached to one another. It has a weight of 50 lb and a 

centroidal radius of gyration of kO = 0.6 ft and is turning 

with an angular velocity of 20 rad>s clockwise. Determine 

the angular velocity of the pulley at the instant the 20-lb 

weight moves 2 ft downward.

1 ft0.5 ft

O

A

30 lbB

20 lb

v � 20 rad/s

Probs. 18–7/8

18–9. The disk, which has a mass of 20 kg, is subjected to 

the couple moment of M = (2u + 4) N # m, where u is in 

radians. If it starts from rest, determine its angular velocity 

when it has made two revolutions.

O

M300 mm

Prob. 18–9

18–10. The spool has a mass of 40 kg and a radius of 

gyration of kO = 0.3 m. If the 10-kg block is released from 

rest, determine the distance the block must fall in order for 

the spool to have an angular velocity v = 15 rad>s. Also, 

what is the tension in the cord while the block is in motion? 

Neglect the mass of the cord.

500 mm300 mm
O

Prob. 18–10

18–11. The force of T = 20 N is applied to the cord of 

negligible mass. Determine the angular velocity of the 20-kg 

wheel when it has rotated 4 revolutions starting from rest. 

The wheel has a radius of gyration of kO = 0.3 m.

T � 20 N

O

0.4 m

Prob. 18–11
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*18–12. Determine the velocity of the 50-kg cylinder after 

it has descended a distance of 2 m. Initially, the system is at 

rest. The reel has a mass of 25 kg and a radius of gyration 

about its center of mass A of kA = 125 mm.

75 mmA

Prob. 18–12

18–13. The 10-kg uniform slender rod is suspended at rest 

when the force of F = 150 N is applied to its end. Determine 

the angular velocity of the rod when it has rotated 90° 

clockwise from the position shown. The force is always 

perpendicular to the rod.

18–14. The 10-kg uniform slender rod is suspended at rest 

when the force of F = 150 N is applied to its end. Determine 

the angular velocity of the rod when it has rotated 180° 

clockwise from the position shown. The force is always 

perpendicular to the rod.

O

3 m

F

Probs. 18–13/14

18–15. The pendulum consists of a 10-kg uniform disk and 

a 3-kg uniform slender rod. If it is released from rest in the 

position shown, determine its angular velocity when it rotates 

clockwise 90°.

2 m

M � 30 N � m
A

B

D

0.8 m

Prob. 18–15

*18–16. A motor supplies a constant torque M = 6 kN # m 

to the winding drum that operates the elevator. If the 

elevator has a mass of 900 kg, the counterweight C has a 

mass of 200 kg, and the winding drum has a mass of 600 kg 

and radius of gyration about its axis of k = 0.6 m, determine 

the speed of the elevator after it rises 5 m starting from rest. 

Neglect the mass of the pulleys.

M

D

C

0.8 m

Prob. 18–16
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18–17. The center O of the thin ring of mass m is given an 

angular velocity of v0. If the ring rolls without slipping, 

determine its angular velocity after it has traveled a distance 

of s down the plane. Neglect its thickness.

s

O

r

u

v0

Prob. 18–17

18–18. The wheel has a mass of 100 kg and a radius 

of  gyration of kO = 0.2 m. A motor supplies a torque  

M = (40 u + 900) N # m, where u is in radians, about the drive 

shaft at O. Determine the speed of the loading car, which 

has a mass of 300 kg, after it travels s = 4 m. Initially the car 

is at rest when s = 0 and u = 0°. Neglect the mass of the 

attached cable and the mass of the car’s wheels.

30�

M

s
0.3 m

O

Prob. 18–18

18–19. The rotary screen S is used to wash limestone. 

When empty it has a mass of 800 kg and a radius of gyration 

of kG = 1.75 m. Rotation is achieved by applying a torque of 

M = 280 N # m about the drive wheel at A. If no slipping 

occurs at A and the supporting wheel at B is free to roll, 

determine the angular velocity of the screen after it has 

rotated 5 revolutions. Neglect the mass of A and B.

0.3 m

A

S

M � 280 N � m
B

2 m

Prob. 18–19

*18–20. If P = 200 N and the 15-kg uniform slender rod 

starts from rest at u = 0�, determine the rod’s angular 

velocity at the instant just before u = 45�.

A

B

45°

600 mm

P � 200 Nu

Prob. 18–20

18
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18–21. A yo-yo has a weight of 0.3 lb and a radius of 

gyration of kO = 0.06 ft. If it is released from rest, determine 

how far it must descend in order to attain an angular 

velocity v = 70 rad>s. Neglect the mass of the string and 

assume that the string is wound around the central peg such 

that the mean radius at which it unravels is r = 0.02 ft.

O
r

Prob. 18–21

18–22. If the 50-lb bucket, C, is released from rest, determine 

its velocity after it has fallen a distance of 10 ft. The windlass A 

can be considered as a 30-lb cylinder, while the spokes are 

slender rods, each having a weight of 2 lb. Neglect the 

pulley’s weight.

4 ft

0.5 ft
0.5 ft

3 ft
B

A

C

Prob. 18–22

18–23. The coefficient of kinetic friction between the 100-lb 

disk and the surface of the conveyor belt is μA = 0.2. If the 

conveyor belt is moving with a speed of vC = 6 ft>s when 

the disk is placed in contact with it, determine the number 

of revolutions the disk makes before it reaches a constant 

angular velocity.

C � 6 ft/sv
A

B0.5 ft

Prob. 18–23

*18–24. The 30-kg disk is originally at rest, and the spring 

is unstretched. A couple moment of M = 80 N # m is then 

applied to the disk as shown. Determine its angular velocity 

when its mass center G has moved 0.5 m along the plane. 

The disk rolls without slipping.

18–25. The 30-kg disk is originally at rest, and the spring is 

unstretched. A couple moment M = 80 N # m is then applied 

to the disk as shown. Determine how far the center of mass 

of the disk travels along the plane before it momentarily 

stops. The disk rolls without slipping.

0.5 m

G

M � 80 N � m

k � 200 N/m
A

Probs. 18–24/25
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18–26. Two wheels of negligible weight are mounted at 

corners A and B of the rectangular 75-lb plate. If the plate is 

released from rest at u =  90�, determine its angular 

velocity at the instant just before u = 0�.

A

B

1.5 ft

3 ft

u

Prob. 18–26

18–27. The link AB is subjected to a couple moment of  

M = 40 N # m. If the ring gear C is fixed, determine the 

angular velocity of the 15-kg inner gear when the link has 

made two revolutions starting from rest. Neglect the mass 

of the link and assume the inner gear is a disk. Motion 

occurs in the vertical plane.

150 mm

200 mm

M � 40  N � m 

A B

C

Prob. 18–27

*18–28. The 10-kg rod AB is pin connected at A and 

subjected to a couple moment of M = 15 N # m. If the rod is 

released from rest when the spring is unstretched at u = 30°, 

determine the rod’s angular velocity at the instant u = 60°. 

As the rod rotates, the spring always remains horizontal, 

because of the roller support at C.

C

A

B
k � 40 N/m

M � 15 N · m

0.75 mu

Prob. 18–28

18–29. The 10-lb sphere starts from rest at u = 0° and rolls 

without slipping down the cylindrical surface which has a 

radius of 10 ft. Determine the speed of the sphere’s center 

of mass at the instant u = 45°.

10 ft

0.5 ft

u

Prob. 18–29

18
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18–30. Motor M exerts a constant force of P = 750 N on 

the rope. If the 100-kg post is at rest when u =  0�, 
determine the angular velocity of the post at the instant 

u =  60�. Neglect the mass of the pulley and its size, and 

consider the post as a slender rod.

M CP � 750 N

3 m

4 m
A

u

B

Prob. 18–30

18–31. The linkage consists of two 6-kg rods AB and CD 

and a 20-kg bar BD. When u = 0°, rod AB is rotating with an 

angular velocity v = 2 rad>s. If rod CD is subjected to a 

couple moment of M = 30 N # m, determine vAB at the 

instant u = 90°.

*18–32. The linkage consists of two 6-kg rods AB and CD 

and a 20-kg bar BD. When u = 0°, rod AB is rotating with an 

angular velocity v = 2 rad>s. If rod CD is subjected to a 

couple moment M = 30 N # m, determine v at the instant  

u = 45°.

1.5 m

1 m 1 m

u

v
M � 30 N � m

B

CA

D

Probs. 18–31/32

18–33. The two 2-kg gears A and B are attached to the 

ends of a 3-kg slender bar. The gears roll within the fixed 

ring gear C, which lies in the horizontal plane. If a 10-N # m 

torque is applied to the center of the bar as shown, 

determine the number of revolutions the bar must rotate 

starting from rest in order for it to have an angular velocity 

of vAB = 20 rad>s. For the calculation, assume the gears 

can be approximated by thin disks. What is the result if the 

gears lie in the vertical plane?

400 mm

150 mm

M � 10 N�m

150 mm

A B

C

Prob. 18–33

18–34. The linkage consists of two 8-lb rods AB and CD 

and a 10-lb bar AD. When u = 0°, rod AB is rotating with an 

angular velocity vAB = 2 rad>s. If rod CD is subjected to a 

couple moment M = 15 lb # ft and bar AD is subjected to a 

horizontal force P = 20 lb as shown, determine vAB at the 

instant u = 90°.

18–35. The linkage consists of two 8-lb rods AB and CD 

and a 10-lb bar AD. When u = 0°, rod AB is rotating with an 

angular velocity vAB = 2 rad>s. If rod CD is subjected to a 

couple moment M = 15 lb # ft and bar AD is subjected to a 

horizontal force P = 20 lb as shown, determine vAB at the 

instant u = 45°.

3 ft

2 ft 2 ft

M � 15 lb · ftB C

A D P � 20 lb

u

vAB 

Probs. 18–34/35
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18.5 Conservation of Energy

When a force system acting on a rigid body consists only of 

conservative forces, the conservation of energy theorem can be used 

to solve a problem that otherwise would be solved using the principle 

of work and energy. This theorem is often easier to apply since the 

work of a conservative force is independent of the path and depends 

only on the initial and final positions of the body. It was shown in  

Sec. 14.5 that the work of a conservative force can be expressed as 

the difference in the body’s potential energy measured from an 

arbitrarily selected reference or datum.

Gravitational Potential Energy. Since the total weight of a 

body can be considered concentrated at its center of gravity, the 

gravitational potential energy of the body is determined by knowing the 

height of the body’s center of gravity above or below a horizontal datum. 

 Vg = WyG  (18–15)

Here the potential energy is positive when yG is positive upward, since the 

weight has the ability to do positive work when the body moves back to 

the datum, Fig. 18–16. Likewise, if G is located below the datum (-yG), the 

gravitational potential energy is negative, since the weight does negative 
work when the body returns to the datum.

Elastic Potential Energy. The force developed by an elastic 

spring is also a conservative force. The elastic potential energy which a 

spring imparts to an attached body when the spring is stretched or 

compressed from an initial undeformed position (s = 0) to a final 

position s, Fig. 18–17, is

 Ve = +1
2 ks2  (18–16)

In the deformed position, the spring force acting on the body always has 

the ability for doing positive work when the spring returns back to its 

original undeformed position (see Sec. 14.5).

�yG

W

Datum

Vg � �WyG

�yG

Vg � �WyG

G

G

W

Gravitational potential energy

Fig. 18–16 

s

Fs

k

Unstretched
position of
spring, s � 0

Elastic potential energy

Ve � �     ks21—
2

Fig. 18–17 

18
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Conservation of Energy. In general, if a body is subjected to 

both gravitational and elastic forces, the total potential energy can be 

expressed as a potential function represented as the algebraic sum

 V = Vg + Ve  (18–17)

Here measurement of V depends upon the location of the body with 

respect to the selected datum.

Realizing that the work of conservative forces can be written as a 

difference in their potential energies, i.e., (�U192)cons = V1 - V2 , Eq. 14–16, 

we can rewrite the principle of work and energy for a rigid body as

 T1 + V1 + (�U1 -2)noncons = T2 + V2 (18–18)

Here (�U192)noncons represents the work of the nonconservative forces such 

as friction. If this term is zero, then

 T1 + V1 = T2 + V2  (18–19)

This equation is referred to as the conservation of mechanical energy. It 

states that the sum of the potential and kinetic energies of the body 

remains constant when the body moves from one position to another. It 

also applies to a system of smooth, pin-connected rigid bodies, bodies 

connected by inextensible cords, and bodies in mesh with other bodies. In 

all these cases the forces acting at the points of contact are eliminated 

from the analysis, since they occur in equal but opposite collinear pairs 

and each pair of forces moves through an equal distance when the system 

undergoes a displacement.

It is important to remember that only problems involving conservative 

force systems can be solved by using Eq. 18–19. As stated in Sec. 14.5, 

friction or other drag-resistant forces, which depend on velocity or 

acceleration, are nonconservative. The work of such forces is transformed 

into thermal energy used to heat up the surfaces of contact, and 

consequently this energy is dissipated into the surroundings and may not 

be recovered. Therefore, problems involving frictional forces can be 

solved by using either the principle of work and energy written in the 

form of Eq. 18–18, if it applies, or the equations of motion.

The torsional springs located at the top 
of the garage door wind up as the door 
is lowered. When the door is raised, the 
potential energy stored in the springs is 
then transferred into gravitational 
potential energy of the door’s weight, 
thereby making it easy to open.  
(© R.C. Hibbeler)
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Procedure for Analysis

The conservation of energy equation is used to solve problems 

involving velocity, displacement, and conservative force systems. For 

application it is suggested that the following procedure be used.

Potential Energy.
  Draw two diagrams showing the body located at its initial and 

final positions along the path.

  If the center of gravity, G, is subjected to a vertical displacement, 
establish a fixed horizontal datum from which to measure the 

body’s gravitational potential energy Vg .

  Data pertaining to the elevation yG of the body’s center of gravity 

from the datum and the extension or compression of any 

connecting springs can be determined from the problem geometry 

and listed on the two diagrams.

  The potential energy is determined from V = Vg + Ve . Here 

Vg = WyG , which can be positive or negative, and Ve = 1
2 ks2, 

which is always positive.

Kinetic Energy.
  The kinetic energy of the body consists of two parts, namely 

translational kinetic energy, T = 1
2 mvG

2 , and rotational kinetic 

energy, T = 1
2 IGv

2.

  Kinematic diagrams for velocity may be useful for establishing a 

relationship between vG and v.

Conservation of Energy.
  Apply the conservation of energy equation T1 + V1 = T2 + V2 .
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EXAMPLE   18.6

The 10-kg rod AB shown in Fig. 18–18a is confined so that its ends 

move in the horizontal and vertical slots. The spring has a stiffness of 

k = 800 N>m and is unstretched when u = 0�. Determine the angular 

velocity of AB when u = 0�, if the rod is released from rest when 

u = 30�. Neglect the mass of the slider blocks.

SOLUTION
Potential Energy.  The two diagrams of the rod, when it is located at 

its initial and final positions, are shown in Fig. 18–18b. The datum, used 

to measure the gravitational potential energy, is placed in line with the 

rod when u = 0�.
When the rod is in position 1, the center of gravity G is located 

below the datum so its gravitational potential energy is negative. 

Furthermore, (positive) elastic potential energy is stored in the spring, 

since it is stretched a distance of s1 = (0.4 sin 30�) m. Thus,

  V1 = -Wy1 + 1
2 ks1

2

  = -(98.1 N)(0.2 sin 30� m) + 1
2(800 N>m)(0.4 sin 30� m)2 = 6.19 J

When the rod is in position 2, the potential energy of the rod is zero, 

since the center of gravity G is located at the datum, and the spring is 

unstretched, s2 = 0. Thus,

V2 = 0

Kinetic Energy. The rod is released from rest from position 1, thus 

(vG)1 = V1 = 0, and so 

T1 = 0

In position 2, the angular velocity is V2 and the rod’s mass center has 

a velocity of (vG)2 . Thus,

  T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

  = 1
2(10 kg)(vG)2

2 + 1
2 3 1

12(10 kg)(0.4 m)24v2
2

Using kinematics, (vG)2 can be related to V2 as shown in Fig. 18–18c. At 

the instant considered, the instantaneous center of zero velocity (IC) for 

the rod is at point A; hence, (vG)2 = (rG>IC)v2 = (0.2 m)v2 . Substituting 

into the above expression and simplifying (or using 12IICv2
2), we get

T2 = 0.2667v2
2

Conservation of Energy.
  5T16 + 5V16 = 5T26 + 5V26
  506 + 56.19 J6 = 50.2667v2

26 + 506
  v2 = 4.82 rad>sd Ans.

0.2 m

0.2 m

A

B

G

k � 800 N/m

(a)

u

A

G

Datum

98.1 N

30�

y1 � (0.2 sin 30�) m

1

s1 � (0.4 sin 30�) m

B

(c)

G

0.2 m

IC

rG/IG

(vG)2
V2

B

Fig. 18–18 

(b)

A
B

98.1 N

2

s2 � 0

G
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EXAMPLE   18.7

The wheel shown in Fig. 18–19a has a weight of 30 lb and a radius of 

gyration of kG = 0.6 ft. It is attached to a spring which has a stiffness 

k = 2 lb>ft and an unstretched length of 1 ft. If the disk is released 

from rest in the position shown and rolls without slipping, determine 

its angular velocity at the instant G moves 3 ft to the left.

SOLUTION
Potential Energy.  Two diagrams of the wheel, when it at the initial 

and final positions, are shown in Fig. 18–19b. A gravitational datum is 

not needed here since the weight is not displaced vertically. From the 

problem geometry the spring is stretched s1 = 1232 + 42 - 12 = 4 ft  

in the initial position, and spring s2 = (4 - 1) = 3 ft in the final 

position. Hence, the positive spring potential energy is

  V1 = 1
2 ks1

2 = 1
2(2 lb>ft)(4 ft)2 = 16 ft # lb

  V2 = 1
2 ks2

2 = 1
2(2 lb>ft)(3 ft)2 = 9 ft # lb

Kinetic Energy.  The disk is released from rest and so (vG)1 = 0, 

V1 = 0. Therefore, 

T1 = 0

Since the instantaneous center of zero velocity is at the ground, Fig. 18–19c, 

we have

  T2 =
1

2
 IICv2

2

  =
1

2
 c a 30 lb

32.2 ft>s2
b (0.6 ft)2 +  a 30 lb

32.2 ft>s2
b (0.75 ft)2 dv2

2

  = 0.4297v2
2

Conservation of Energy.

  5T16 + 5V16 = 5T26 + 5V26
  506 + 516 ft # lb6 = 50.4297v2

26 + 59 ft # lb6
  v2 = 4.04 rad>sd Ans.

NOTE: If the principle of work and energy were used to solve this 

problem, then the work of the spring would have to be determined 

by considering both the change in magnitude and direction of the 

spring force.

3 ft

G
0.75 ft

4 ft

k � 2 lb/ft

(a)

(b)

30 lb

s1 � 4 ft
s2 � 3 ft

2 1

30 lb

(c)

IC

0.75 ft

(vG)2

V2

Fig. 18–19 
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EXAMPLE   18.8

The 10-kg homogeneous disk shown in Fig. 18–20a is attached to a 

uniform 5-kg rod AB. If the assembly is released from rest when 
u = 60�, determine the angular velocity of the rod when u = 0�. 
Assume that the disk rolls without slipping. Neglect friction along the 

guide and the mass of the collar at B.

SOLUTION
Potential Energy. Two diagrams for the rod and disk, when they 

are located at their initial and final positions, are shown in Fig. 18–20b. 

For convenience the datum passes through point A.

When the system is in position 1, only the rod’s weight has positive 

potential energy. Thus,

V1 = Wry1 = (49.05 N)(0.3 sin 60� m) = 12.74 J

When the system is in position 2, both the weight of the rod and the 

weight of the disk have zero potential energy. Why? Thus,

V2 = 0

Kinetic Energy. Since the entire system is at rest at the initial position,

T1 = 0

In the final position the rod has an angular velocity (Vr)2 and its mass 

center has a velocity (vG)2 , Fig. 18–20c. Since the rod is fully extended 

in this position, the disk is momentarily at rest, so (Vd)2 = 0 and 

(vA)2 = 0. For the rod (vG)2 can be related to (Vr)2 from the 

instantaneous center of zero velocity, which is located at point A, 

Fig. 18–20c. Hence, (vG)2 = rG>IC(vr)2 or (vG)2 = 0.3(vr)2 . Thus,

  T2 =
1

2
 mr(vG)2

2 +
1

2
 IG(vr)2

2 +
1

2
 md(vA)2

2 +
1

2
 IA(vd)2

2

  =
1

2
 (5 kg)[(0.3 m)(vr)2]

2 +
1

2
 c 1

12
 (5 kg)(0.6 m)2 d (vr)2

2 + 0 + 0

  = 0.3(vr)2
2

Conservation of Energy.

  5T16 + 5V16 = 5T26 + 5V26
  506 + 512.74 J6 = 50.3(vr)2

26 + 506
  (vr)2 = 6.52 rad>sb Ans.

NOTE: We can also determine the final kinetic energy of the rod using 

T2 = 1
2IICv2

2.

(a)

0.1 m

G

A

B

0.6 m

u

(b)

60�

A

49.05 N98.1 N
98.1 N

Datum

49.05 N

G

y1 � (0.3 sin 60�) m

1 2
GA

(c)

G
(vG)2

A(IC)
rG/IC

(Vd)2 � 0
(Vr)2

Fig. 18–20 
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FUNDAMENTAL PROBLEMS

F18–7. If the 30@kg disk is released from rest when u = 0�, 
determine its angular velocity when u = 90�. 

F18–10. The 30@kg rod is released from rest when u = 0�. 
Determine the angular velocity of the rod when u = 90�. 
The spring is unstretched when u = 0�. 

0.3 m
O

G

u

Prob. F18–7 

F18–8. The 50@kg reel has a radius of gyration about its 

center O of kO = 300 mm. If it is released from rest, 

determine its angular velocity when its center O has traveled 

6 m down the smooth inclined plane. 

O

0.4 m

0.2 m

30�

Prob. F18–8 

F18–9. The 60@kg rod OA is released from rest when 

u = 0�. Determine its angular velocity when u = 45�.  The 

spring remains vertical during the motion and is unstretched 

when u = 0�. 

F18–12. The 20@kg rod is released from rest when u = 0�. 
Determine its angular velocity when u = 90�. The spring 

has an unstretched length of 0.5 m. 

k � 150 N/m

3 m

A

O
u

Prob. F18–9 

1.5 m

B

A

k � 300 N/m

u

Prob. F18–11 

F18–11. The 30@kg rod is released from rest when u = 45�. 
Determine the angular velocity of the rod when u = 0�. The 

spring is unstretched when u = 45�. 

k � 80 N/m
1.5 m

A

O
u

2 m

Prob. F18–10 

A

k � 100 N/m

B

2 m

2 m

1 m

u

v

Prob. F18–12 
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PROBLEMS

*18–36. The assembly consists of a 3-kg pulley A and 

10-kg pulley B. If a 2-kg block is suspended from the cord, 

determine the block’s speed after it descends 0.5 m starting 

from rest. Neglect the mass of the cord and treat the pulleys 

as thin disks. No slipping occurs.

18–37. The assembly consists of a 3-kg pulley A and  

10-kg pulley B. If a 2-kg block is suspended from the cord, 

determine the distance the block must descend, starting 

from rest, in order to cause B to have an angular velocity of 

6 rad>s. Neglect the mass of the cord and treat the pulleys as 

thin disks. No slipping occurs.

A
B

30 mm

100 mm

Probs. 18–36/37

18–38. The spool has a mass of 50 kg and a radius of 

gyration of kO = 0.280 m. If the 20-kg block A is released 

from rest, determine the distance the block must fall in 

order for the spool to have an angular velocity v = 5 rad>s. 

Also, what is the tension in the cord while the block is in 

motion? Neglect the mass of the cord.

18–39. The spool has a mass of 50 kg and a radius of gyration 

of kO = 0.280 m. If the 20-kg block A is released from rest, 

determine the velocity of the block when it descends 0.5 m.

A

0.2 m
O

0.3 m

Probs. 18–38/39

*18–40. An automobile tire has a mass of 7 kg and radius 

of gyration of kG = 0.3 m. If it is released from rest at A on 

the incline, determine its angular velocity when it reaches 

the horizontal plane. The tire rolls without slipping.

0.4 m

30�

5 m

G

A

B

0.4 m

Prob. 18–40

18–41. The spool has a mass of 20 kg and a radius of 

gyration of kO = 160 mm. If the 15-kg block A is released 

from rest, determine the distance the block must fall in 

order for the spool to have an angular velocity v = 8 rad>s. 
Also, what is the tension in the cord while the block is in 

motion? Neglect the mass of the cord.

18–42. The spool has a mass of 20 kg and a radius of 

gyration of kO = 160 mm. If the 15-kg block A is released 

from rest, determine the velocity of the block when it 

descends 600 mm.

200 mm

A

O

Probs. 18–41/42
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18–43. A uniform ladder having a weight of 30 lb is released 

from rest when it is in the vertical position. If it is allowed to 

fall freely, determine the angle u at which the bottom end A 

starts to slide to the right of A. For the calculation, assume the 

ladder to be a slender rod and neglect friction at A.

u

A

10 ft

Prob. 18–43

*18–44. Determine the speed of the 50-kg cylinder after it 

has descended a distance of 2 m, starting from rest. Gear A 

has a mass of 10 kg and a radius of gyration of 125 mm 

about its center of mass. Gear B and drum C have a 

combined mass of 30 kg and a radius of gyration about their 

center of mass of 150 mm.

A
B

D

C

150 mm
100 mm

200 mm

Prob. 18–44

18–45. The 12-kg slender rod is attached to a spring, which 

has an unstretched length of 2 m. If the rod is released from 

rest when u = 30°, determine its angular velocity at the 

instant u = 90°.

2 m
u

2 m

A

C

k � 40 N/m

B

Prob. 18–45

18–46. The 12-kg slender rod is attached to a spring, which 

has an unstretched length of 2 m. If the rod is released from 

rest when u = 30°, determine the angular velocity of the rod 

the instant the spring becomes unstretched.

2 m
u

2 m

A

C

k � 40 N/m

B

Prob. 18–46

18–47. The 40-kg wheel has a radius of gyration about its 

center of gravity G of kG = 250 mm. If it rolls without 

slipping, determine its angular velocity when it has rotated 

clockwise 90° from the position shown. The spring AB has a 

stiffness k = 100 N>m and an unstretched length of 500 mm. 

The wheel is released from rest.

G

B

A

k � 100 N/m

1500 mm

400 mm

200 mm

200 mm

Prob. 18–47

18
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*18–48. The assembly consists of two 10-kg bars which are 

pin connected. If the bars are released from rest when u = 60°, 

determine their angular velocities at the instant u = 0°. The 

5-kg disk at C has a radius of 0.5 m and rolls without 

slipping.

18–49. The assembly consists of two 10-kg bars which are 

pin connected. If the bars are released from rest when  

u = 60°, determine their angular velocities at the instant  

u = 30°. The 5-kg disk at C has a radius of 0.5 m and rolls 

without slipping.

A

3 m3 m

C

B

uu

Prob. 18–48/49

18–50. The compound disk pulley consists of a hub and 

attached outer rim. If it has a mass of 3 kg and a radius of 

gyration of kG = 45 mm, determine the speed of block A 

after A descends 0.2 m from rest. Blocks A and B each have 

a mass of 2 kg. Neglect the mass of the cords.

B

100 mm

30 mm

G

A

Prob. 18–50

18–51. The uniform garage door has a mass of 150 kg and 

is guided along smooth tracks at its ends. Lifting is done 

using the two springs, each of which is attached to the 

anchor bracket at A and to the counterbalance shaft at B 

and C. As the door is raised, the springs begin to unwind 

from the shaft, thereby assisting the lift. If each spring 

provides a torsional moment of M = (0.7u) N # m, where u is 

in radians, determine the angle u0 at which both the left-

wound and right-wound spring should be attached so that 

the door is completely balanced by the springs, i.e., when 

the door is in the vertical position and is given a slight force 

upward, the springs will lift the door along the side tracks to 

the horizontal plane with no final angular velocity. Note: 

The elastic potential energy of a torsional spring is  

Ve = 
1

2
ku2, where M = ku and in this case k = 0.7 N # m>rad.

3 m 4 m

C
A

B

Prob. 18–51

*18–52. The two 12-kg slender rods are pin connected and 

released from rest at the position u = 60°. If the spring has 

an unstretched length of 1.5 m, determine the angular 

velocity of rod BC, when the system is at the position u = 0°. 

Neglect the mass of the roller at C.

A
C

B

2 m

k � 20 N/m

2 m

u

Prob. 18–52
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18–53. The two 12-kg slender rods are pin connected and 

released from rest at the position u = 60°. If the spring has 

an unstretched length of 1.5 m, determine the angular 

velocity of rod BC, when the system is at the position  

u = 30°.

A
C

B

2 m

k � 20 N/m

2 m

u

Prob. 18–53

18–54. If the 250-lb block is released from rest when the 

spring is unstretched, determine the velocity of the block 

after it has descended 5 ft. The drum has a weight of 50 lb 

and a radius of gyration of kO = 0.5 ft about its center of 

mass O.

k � 75 lb/ft
0.75 ft

0.375 ft

O

Prob. 18–54

18–55. The slender 15-kg bar is initially at rest and 

standing in the vertical position when the bottom end A is 

displaced slightly to the right. If the track in which it moves 

is smooth, determine the speed at which end A strikes the 

corner D. The bar is constrained to move in the vertical 

plane. Neglect the mass of the cord BC.

4 m

4 m

5 m

A D

B

C

Prob. 18–55

*18–56. If the chain is released from rest from the position 

shown, determine the angular velocity of the pulley after 

the end B has risen 2 ft. The pulley has a weight of 50 lb and 

a radius of gyration of 0.375 ft about its axis. The chain 

weighs 6 lb>ft.

A

B

6 ft

4 ft

0.5  ft

Prob. 18–56

18
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18–57. If the gear is released from rest, determine its 

angular velocity after its center of gravity O has descended 

a distance of 4 ft. The gear has a weight of 100 lb and a 

radius of gyration about its center of gravity of k = 0.75 ft.

1 ft

O

Prob. 18–57

18–58. The slender 6-kg bar AB is horizontal and at rest 

and the spring is unstretched. Determine the stiffness k of 

the spring so that the motion of the bar is momentarily 

stopped when it has rotated clockwise 90° after being 

released.

k

A B

C

2 m

1.5 m

Prob. 18–58

18–59. The slender 6-kg bar AB is horizontal and at rest 

and the spring is unstretched. Determine the angular 

velocity of the bar when it has rotated clockwise 45° after 

being released. The spring has a stiffness of k = 12 N>m.

k

A B

C

2 m

1.5 m

Prob. 18–59

*18–60. The pendulum consists of a 6-kg slender rod fixed 

to a 15-kg disk. If the spring has an unstretched length of 

0.2  m, determine the angular velocity of the pendulum 

when it is released from rest and rotates clockwise 90° from 

the position shown. The roller at C allows the spring to 

always remain vertical.

0.5 m 0.5 m 
0.3 m

 k � 200 N/m

C

B DA

0.5 m

Prob. 18–60
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18–61. The 500-g rod AB rests along the smooth inner 

surface of a hemispherical bowl. If the rod is released from 

rest from the position shown, determine its angular velocity 

at the instant it swings downward and becomes horizontal.

A

B

200 mm

200 mm

Prob. 18–61

18–62. The 50-lb wheel has a radius of gyration about its 

center of gravity G of kG = 0.7 ft. If it rolls without slipping, 

determine its angular velocity when it has rotated clockwise 

90° from the position shown. The spring AB has a stiffness 

k = 1.20 lb>ft and an unstretched length of 0.5 ft. The wheel 

is released from rest.

G

B

Ak � 1.20 lb/ft

3 ft

1 ft

0.5 ft

0.5 ft

Prob. 18–62

18–63. The system consists of 60-lb and 20-lb blocks A  

and B, respectively, and 5-lb pulleys C and D that can be 

treated as thin disks. Determine the speed of block A after 

block B has risen 5 ft, starting from rest. Assume that the cord 

does not slip on the pulleys, and neglect the mass of the cord.

0.5 ft

A

C

D
0.5 ft

B

Prob. 18–63

*18–64. The door is made from one piece, whose ends 

move along the horizontal and vertical tracks. If the door is 

in the open position, u = 0�, and then released, determine 

the speed at which its end A strikes the stop at C. Assume 

the door is a 180-lb thin plate having a width of 10 ft.

C A

B

5 ft

3 ft

u

Prob. 18–64

18
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18–65. The door is made from one piece, whose ends move 

along the horizontal and vertical tracks. If the door is in the 

open position, u = 0�, and then released, determine its 

angular velocity at the instant u = 30�.  Assume the door is 

a 180-lb thin plate having a width of 10 ft.

C A

B

5 ft

3 ft

u

Prob. 18–65

18–66. The end A of the garage door AB travels along the 

horizontal track, and the end of member BC is attached to a 

spring at C. If the spring is originally unstretched, determine 

the stiffness k so that when the door falls downward from 

rest in the position shown, it will have zero angular velocity 

the moment it closes, i.e., when it and BC become vertical. 

Neglect the mass of member BC and assume the door is a 

thin plate having a weight of 200 lb and a width and height 

of 12 ft. There is a similar connection and spring on the 

other side of the door.

15�
7 ft

5 ft

12 ft
A

B

C

D

2 ft 6 ft

1 ft

Prob. 18–66

18–67. The system consists of a 30-kg disk, 12-kg slender 

rod BA, and a 5-kg smooth collar A. If the disk rolls without 

slipping, determine the velocity of the collar at the instant 

u = 0�. The system is released from rest when u = 45�.

0.5 m

2 m

A

C

B

30�

u

Prob. 18–67

*18–68. The system consists of a 30-kg disk A, 12-kg 

slender rod BA, and a 5-kg smooth collar A. If the disk rolls 

without slipping, determine the velocity of the collar at the 

instant u = 30�. The system is released from rest when 

u = 45�.

0.5 m

2 m

A

C

B

30�

u

Prob. 18–68
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C18–4. Determine the counterweight of A needed to balance 

the weight of the bridge deck when u = 0�. Show that this 

weight will maintain equilibrium of the deck by considering 

the potential energy of the system when the deck is in the 

arbitrary position u. Both the deck and AB are horizontal 

when u = 0�. Neglect the weights of the other members. Use 

appropriate numerical values to explain this result.

C18–2. Two torsional springs, M = ku, are used to assist in 

opening and closing the hood of this truck. Assuming the 

springs are uncoiled (u = 0�) when the hood is opened, 

determine the stiffness k (N # m>rad) of each spring so that 

the hood can easily be lifted, i.e., practically no force applied 

to it, when it is closed in the unlocked position. Use 

appropriate numerical values to explain your result. 

C18–3. The operation of this garage door is assisted using 

two springs AB and side members BCD, which are pinned at C. 

Assuming the springs are unstretched when the door is in the 

horizontal (open) position and ABCD is vertical, determine 

each spring stiffness k so that when the door falls to the vertical 

(closed) position, it will slowly come to a stop. Use appropriate 

numerical values to explain your result. 

C18–1. The bicycle and rider start from rest at the top of 

the hill. Show how to determine the speed of the rider when 

he freely coasts down the hill. Use appropriate dimensions 

of the wheels, and the mass of the rider, frame and wheels of 

the bicycle to explain your results. 

CONCEPTUAL PROBLEMS

B

A

u

Prob. C18–1 (© R.C. Hibbeler)
Prob. C18–3 (© R.C. Hibbeler)

Prob. C18–2 (© R.C. Hibbeler) Prob. C18–4 (© R.C. Hibbeler)
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CHAPTER REVIEW

Kinetic Energy

The kinetic energy of a rigid body that undergoes 

planar motion can be referenced to its mass 

center. It includes a scalar sum of its translational 

and rotational kinetic energies. 

Translation

T = 1
2 mvG

2

Rotation About a Fixed Axis

T = 1
2 mvG

2 + 1
2 IGv

2

or 

T = 1
2 IOv

2

General Plane Motion

T = 1
2 mvG

2 + 1
2 IGv

2

or 

T = 1
2IICv

2

vG

G

O

Rotation About a Fixed Axis

V

vG

G

General Plane Motion

V

vG � v

G

Translation

v
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Work of a Force and a Couple Moment

A force does work when it undergoes a 

displacement ds in the direction of the 

force. In particular, the frictional and 

normal forces that act on a cylinder or 

any circular body that rolls without 
slipping will do no work, since the 

normal force does not undergo a 

displacement and the frictional force 

acts on successive points on the surface 

of the body. 

UF = LF cos u ds

UFC
= (Fc cos u)s

Constant Force

U = -
1

2
 k s2

Spring

UM = L
u2

u1

M du

UM = M(u2 - u1)

Constant Magnitude

UW = -W�y

Weight

s

F

F
s

F

F

u

u

s

Fc

Fc

Fc cos u

Fc cos u

u

u

W

W

G

G

�y

s

k

s

Fsk

Unstretched
position of
spring, s � 0

M

u



18

Principle of Work and Energy

Problems that involve velocity, force, and 

displacement can be solved using the 

principle of work and energy. The kinetic 

energy is the sum of both its rotational 

and translational parts. For application, a 

free-body diagram should be drawn in 

order to account for the work of all of the 

forces and couple moments that act on 

the body as it moves along the path. 

T1 + �U1 - 2 = T2

The potential energy is the sum of the 

body’s gravitational and elastic potential 

energies. The gravitational potential energy 

will be positive if the body’s center of 

gravity is located above a datum. If it is 

below the datum, then it will be negative. 

The elastic potential energy is always 

positive, regardless if the spring is stretched 

or compressed. 

T1 + V1 = T2 + V2

where V = Vg + Ve

Conservation of Energy

If a rigid body is subjected only to 

conservative forces, then the conservation- 

of-energy equation can be used to solve the 

problem. This equation requires that the 

sum of the potential and kinetic energies of 

the body remain the same at any two points 

along the path.

�yG

W

Datum

�yG

G

G

W

Gravitational potential energy

Vg � �WyG

 Vg � WyG

s

Fs

k

Unstretched
position of
spring, s � 0

Elastic potential energy

Ve �     ks2
1
2
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R18–1. The pendulum of the Charpy impact machine has 

a mass of 50 kg and a radius of gyration of kA = 1.75 m. If it 

is released from rest when u = 0°, determine its angular 

velocity just before it strikes the specimen S, u = 90°

A

S

u

G

1.25 m

Prob. R18–1

R18–2. The 50-kg flywheel has a radius of gyration of  

k0 = 200 mm about its center of mass. If it is subjected to a 

torque of M = (9u1>2 + 1) N # m, where u is in radians, 

determine its angular velocity when it has rotated  

5 revolutions, starting from rest.

M � (9 u1�2 + 1) N�m

O

Prob. R18–2

R18–3. The drum has a mass of 50 kg and a radius of 

gyration about the pin at O of kO = 0.23 m. Starting from 

rest, the suspended 15-kg block B is allowed to fall 3 m 

without applying the brake ACD. Determine the speed of 

the block at this instant. If the coefficient of kinetic friction 

at the brake pad C is mk = 0.5, determine the force P that 

must be applied at the brake handle which will then stop the 

block after it descends another 3 m. Neglect the thickness of 

the handle.

0.25 m
0.15 m

O

A
B

C

P

0.75 m

0.5 m

D

Prob. R18–3

R18–4. The spool has a mass of 60 kg and a radius of 

gyration of kG = 0.3 m. If it is released from rest, determine 

how far its center descends down the smooth plane before it 

attains an angular velocity of v = 6 rad>s. Neglect the mass 

of the cord which is wound around the central core. The 

coefficient of kinetic friction between the spool and plane 

at A is mk = 0.2.

30�

G

A

0.5 m
0.3 m

Prob. R18–4

REVIEW PROBLEMS
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R18–5. The gear rack has a mass of 6 kg, and the gears 

each have a mass of 4 kg and a radius of gyration of  

k = 30 mm at their centers. If the rack is originally moving 

downward at 2 m>s, when s = 0, determine the speed of the 

rack when s = 600 mm. The gears are free to turn about their 

centers A and B.

s

A B

50 mm50 mm

Prob. R18–5

R18-6. At the instant shown, the 50-lb bar rotates 

clockwise at 2 rad>s. The spring attached to its end always 

remains vertical due to the roller guide at C. If the spring has 

an unstretched length of 2 ft and a stiffness of k = 6 lb>ft, 
determine the angular velocity of the bar the instant it has 

rotated 30° clockwise.

A

B

k

C

6 ft

4 ft

2 rad/s

Prob. R18–6

R18–7. The system consists of a 20-lb disk A, 4-lb slender 

rod BC, and a 1-lb smooth collar C. If the disk rolls without 

slipping, determine the velocity of the collar at the instant 

the rod becomes horizontal, i.e., u = 0°. The system is 

released from rest when u = 45°.

0.8 ft

3 ft

A

C

B

u

Prob. R18–7

R18–8. At the instant the spring becomes undeformed, 

the center of the 40-kg disk has a speed of 4 m>s. From this 

point determine the distance d the disk moves down the 

plane before momentarily stopping. The disk rolls without 

slipping.

0.3 m

k � 200 N/m

30�

Prob. R18–8



The impulse that this tugboat imparts to this ship will cause it to turn 
in a manner that can be predicted by applying the principles of 

impulse and momentum.

Chapter 19

(© Hellen Sergeyeva/Fotolia)



Planar Kinetics of a 
Rigid Body: Impulse 
and Momentum

CHAPTER OBJECTIVES

■ To develop formulations for the linear and angular momentum  
of a body.

■ To apply the principles of linear and angular impulse and 
momentum to solve rigid-body planar kinetic problems that 
involve force, velocity, and time.

■ To discuss application of the conservation of momentum.

■ To analyze the mechanics of eccentric impact.

19.1 Linear and Angular Momentum

In this chapter we will use the principles of linear and angular impulse 

and momentum to solve problems involving force, velocity, and time as 

related to the planar motion of a rigid body. Before doing this, we will first 

formalize the methods for obtaining a body’s linear and angular 

momentum, assuming the body is symmetric with respect to an inertial 

x–y reference plane.

Linear Momentum. The linear momentum of a rigid body is 

determined by summing vectorially the linear momenta of all the particles 

of the body, i.e., L = �mi vi. Since �mi vi = mvG (see Sec. 15.2) we can 

also write

 L = mvG (19–1)

This equation states that the body’s linear momentum is a vector quantity 

having a magnitude mvG, which is commonly measured in units of 

kg #  m>s or slug #  ft>s and a direction defined by vG the velocity of the 

body’s mass center.
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Angular Momentum. Consider the body in Fig. 19–1a, which is 

subjected to general plane motion. At the instant shown, the arbitrary 

point P has a known velocity vP, and the body has an angular velocity �. 

Therefore the velocity of the ith particle of the body is

vi = vP + vi>P = vP + V * r

The angular momentum of this particle about point P is equal to the 

“moment” of the particle’s linear momentum about P, Fig. 19–1a. Thus,

(HP)i = r * mi vi

Expressing vi in terms of vP and using Cartesian vectors, we have

(HP)i k = mi (xi + yj) * [(vP)x i + (vP)y j + vk * (xi + yj)] 

  (HP)i = -miy(vP)x + mix(vP)y + mivr2

Letting mi S dm and integrating over the entire mass m of the body, 

we obtain

HP = - aLm
y dmb (vP)x + aLm

x dmb (vP)y + aLm
r2 dmbv

Here HP represents the angular momentum of the body about an axis 

(the z axis) perpendicular to the plane of motion that passes through 

point P. Since ym = 1y dm and  xm = 1x dm, the integrals for the first 

and second terms on the right are used to locate the body’s center of 

mass G with respect to P, Fig. 19–1b. Also, the last integral represents the 

body’s moment of inertia about point P. Thus,

 HP = -ym(vP)x + xm(vP)y + IPv (19–2)

This equation reduces to a simpler form if P coincides with the mass 

center G for the body,* in which case x = y = 0. Hence,

 HG = IGv  (19–3)

y

xP

vP

r

i
vi

y

x

(a)

V

y

xP

vP

G

(b)

vG

_
r

V

_
x

_
y

Fig. 19–1 

*It also reduces to the same simple form, HP = IPv, if point P is a fixed point (see   

Eq. 19–9) or the velocity of P is directed along the line PG.
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Here the angular momentum of the body about G is equal to the product 
of the moment of inertia of the body about an axis passing through G and 
the body’s angular velocity. Realize that HG is a vector quantity having a 

magnitude IGv, which is commonly measured in units of kg # m2>s or 

slug # ft2>s, and a direction defined by V, which is always perpendicular to 

the plane of motion.

Equation 19–2 can also be rewritten in terms of the x and y components 

of the velocity of the body’s mass center, (vG)x and (vG)y, and the body’s 

moment of inertia IG. Since G is located at coordinates (x,y), then by the 

parallel-axis theorem, IP = IG + m(x2 + y2). Substituting into Eq. 19–2 

and rearranging terms, we have

 HP = ym[-(vP)x + yv] + xm[(vP)y + xv] + IGv (19–4)

From the kinematic diagram of Fig. 19–1b, vG can be expressed in terms 

of vP as

 vG = vP + v * r

 (vG)x i + (vG)y j = (vP)x i + (vP)y j + vk * (xi + yj)

Carrying out the cross product and equating the respective i and j 
components yields the two scalar equations

 (vG)x = (vP)x - yv

 (vG)y = (vP)y + xv

Substituting these results into Eq. 19–4 yields

 (a+ )HP = -ym(vG)x + xm(vG)y + IGv (19–5)

As shown in Fig. 19–1c, this result indicates that when the angular 
momentum of the body is computed about point P, it is equivalent to the 
moment of the linear momentum mvG, or its components m(vG)x and 

m(vG)y, about P plus the angular momentum IG V. Using these results, we 

will now consider three types of motion.

y

xP

G
_
y

_
x

(c)

m(vG)y

HG � IGV

L � mvG

m(vG)x

Body momentum
diagram

 Fig. 19–1 
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Translation. When a rigid body is subjected to either rectilinear or 

curvilinear translation, Fig. 19–2a, then V = 0 and its mass center has a 

velocity of vG = v. Hence, the linear momentum, and the angular 

momentum about G, become

 
L = mvG

 HG = 0
 (19–6)

If the angular momentum is computed about some other point A, the 

“moment” of the linear momentum L must be found about the point. 

Since d is the “moment arm” as shown in Fig. 19–2a, then in accordance 

with Eq. 19–5, HA = (d)(mvG)d.

Rotation About a Fixed Axis. When a rigid body is rotating 
about a fixed axis, Fig. 19–2b, the linear momentum, and the angular 

momentum about G, are

 
 L = mvG

 HG = IGv
 (19–7)

It is sometimes convenient to compute the angular momentum about 

point O. Noting that L (or vG) is always perpendicular to rG, we have

 (a+) HO = IGv + rG(mvG) (19–8)

Since vG = rGv, this equation can be written as HO = (IG + mr G
2 )v. 

Using the parallel-axis theorem,*

 HO = IO v  (19–9)

For the calculation, then, either Eq. 19–8 or 19–9 can be used.

d

G

L � mvG

vG � vA

Translation

(a)

G

L � mvG

HG � IGV

O

Rotation about a fixed axis

(b)

rG

V

Fig. 19–2

*The similarity between this derivation and that of Eq. 17–16 (�MO = IOa) and  

Eq. 18–5 1T = 1
2 IOv

22 should be noted. Also note that the same result can be obtained 

from Eq. 19–2 by selecting point P at O, realizing that (vO)x = (vO)y = 0.
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General Plane Motion. When a rigid body is subjected to general 

plane motion, Fig. 19–2c, the linear momentum, and the angular 

momentum about G, become

 
 L = mvG

 HG = IG v
 (19–10)

If the angular momentum is computed about point A, Fig. 19–2c, it is 

necessary to include the moment of L and HG about this point. In this case,

(a+) HA = IGv + (d)(mvG)

Here d is the moment arm, as shown in the figure. 

As a special case, if point A is the instantaneous center of zero velocity 

then, like Eq. 19–9, we can write the above equation in simplified form as 

 HIC = IIC v  (19–11)

where IIC is the moment of inertia of the body about the IC. (See Prob. 19–2.)

HG � IGV

L � mvG

G

A

d

General plane motion

(c)

Fig. 19–2 

O

G

d

IGV

mvG As the pendulum swings downward, its angular 
momentum about point O can be determined by 
computing the moment of IG V and mvG about O. 

This is HO = IGv + (mvG)d. Since vG = vd, then 
HO = IGv + m(vd)d = (IG + md2)v = IOv. 
(© R.C. Hibbeler)
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At a given instant the 5-kg slender bar has the motion shown in  

Fig. 19–3a. Determine its angular momentum about point G and about 

the IC at this instant.

EXAMPLE   19.1

G

(a)

30�

4 m

B

A

vA � 2 m/s

G

A

B

(b)

2 m/s

2 m

2 m

2 m

4 m cos 30�IC

vG
vB 30�

30� 30�

30�

V

Fig. 19–3 

SOLUTION
Bar. The bar undergoes general plane motion. The IC is established 

in Fig. 19–3b, so that

 v =
2 m>s

4 m cos 30�
= 0.5774 rad>s  

 vG = (0.5774 rad>s)(2 m) = 1.155 m>s
Thus,

(c+) HG = IGv = 3 1
12(5 kg)(4 m)24(0.5774 rad>s) = 3.85 kg # m2>sb Ans.

Adding IGv and the moment of mvG about the IC yields

(c+) HIC = IGv + d(mvG)

= c 1
12(5 kg)(4 m)2 d (0.5774 rad>s) + (2 m)(5 kg)(1.155 m>s)

 = 15.4 kg # m2>sb Ans.

We can also use

(c +) HIC = IICv

 = 3 1
12 (5 kg)(4 m)2 +  (5 kg)(2 m)24(0.5774 rad>s)

 = 15.4 kg # m2>sb Ans.
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19.2 Principle of Impulse and Momentum

Like the case for particle motion, the principle of impulse and momentum 

for a rigid body can be developed by combining the equation of motion 

with kinematics. The resulting equation will yield a direct solution to 
problems involving force, velocity, and time.

Principle of Linear Impulse and Momentum. The equation 

of translational motion for a rigid body can be written as 

�F = maG = m(dvG>dt). Since the mass of the body is constant,

�F =
d

dt
 (mvG)

Multiplying both sides by dt and integrating from t = t1, vG = (vG)1 to 

t = t2, vG = (vG)2 yields

� L
t2

t1

F dt = m(vG)2 - m(vG)1

This equation is referred to as the principle of linear impulse and 
momentum. It states that the sum of all the impulses created by the 

external force system which acts on the body during the time interval t1 to 

t2 is equal to the change in the linear momentum of the body during this 

time interval, Fig. 19–4.

Principle of Angular Impulse and Momentum. If the body 

has general plane motion then �MG = IGa = IG(dv>dt). Since the 

moment of inertia is constant,

�MG =
d

dt
 (IGv)

Multiplying both sides by dt and integrating from t = t1, v = v1 to 

t = t2, v = v2 gives

 � L
t2

t1

MG dt = IGv2 - IGv1 (19–12)

In a similar manner, for rotation about a fixed axis passing through 

point O, Eq. 17–16 (�MO = IOa) when integrated becomes

 � L
t2

t1

MO dt = IOv2 - IOv1 (19–13)

Equations 19–12 and 19–13 are referred to as the principle of angular 
impulse and momentum. Both equations state that the sum of the angular 

impulses acting on the body during the time interval t1 to t2 is equal to 

the change in the body’s angular momentum during this time interval.

m(vG)1

IGV1

G

Initial
momentum
diagram

(a)

F1 dt

G

M1 dt

W(t2 � t1)

F3 dt
F2 dt

Impulse
diagram

(b)

�
t2

t1
�

t2

t1
�

t2

t1
� t2

t1
�

G

Final
momentum
diagram

(c)

IGV2

m(vG)2

=

Fig. 19–4 
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To summarize these concepts, if motion occurs in the x–y plane, the 

following three scalar equations can be written to describe the planar 
motion of the body.

 m(vGx)1 + � L
t2

t1

Fx dt = m(vGx)2

  m(vGy)1 + � L
t2

t1

Fy dt = m(vGy)2  (19–14)

 IGv1 + � L
t2

t1

MG dt = IGv2

The terms in these equations can be shown graphically by drawing a 

set of impulse and momentum diagrams for the body, Fig. 19–4. Note that 

the linear momentum mvG is applied at the body’s mass center, Figs. 19–4a 

and 19–4c; whereas the angular momentum IG V is a free vector, and 

therefore, like a couple moment, it can be applied at any point on the 

body. When the impulse diagram is constructed, Fig. 19–4b, the forces F 

and moment M vary with time, and are indicated by the integrals. 

However, if F and M are constant integration of the impulses yields 

F(t2 - t1) and M(t2 - t1), respectively. Such is the case for the body’s 

weight W, Fig. 19–4b.

Equations 19–14 can also be applied to an entire system of connected 

bodies rather than to each body separately. This eliminates the need to 

include interaction impulses which occur at the connections since they 

are internal to the system. The resultant equations may be written in 

symbolic form as

aa syst. linear

momentum
b

x1

+ aa syst. linear

impulse
b

x(1 -2)

= aa syst. linear

momentum
b

x2

aa syst. linear

momentum
b

y1

+ aa syst. linear

impulse
b

y(1 -2)

= aa syst. linear

momentum
b

y2

 aa syst. angular

momentum
b

O1

+ aa syst. angular

impulse
b

O(1 -2)

= aa syst. angular

momentum
b

O2

(19–15)

As indicated by the third equation, the system’s angular momentum and 

angular impulse must be computed with respect to the same reference 
point O for all the bodies of the system.

m(vG)1

IGV1

G

Initial
momentum
diagram

(a)

F1 dt

G

M1 dt

W(t2 � t1)

F3 dt
F2 dt

Impulse
diagram

(b)

�
t2

t1
�

t2

t1
�

t2

t1
� t2

t1
�

G

Final
momentum
diagram

(c)

IGV2

m(vG)2

=

Fig. 19–4 (repeated) 
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Procedure For Analysis

Impulse and momentum principles are used to solve kinetic 

problems that involve velocity, force, and time since these terms are 

involved in the formulation.

Free-Body Diagram.
  Establish the x, y, z inertial frame of reference and draw the free-

body diagram in order to account for all the forces and couple 

moments that produce impulses on the body.

  The direction and sense of the initial and final velocity of the body’s 

mass center, vG, and the body’s angular velocity V should be 

established. If any of these motions is unknown, assume that the sense 

of its components is in the direction of the positive inertial coordinates.

  Compute the moment of inertia IG or IO.
  As an alternative procedure, draw the impulse and momentum 

diagrams for the body or system of bodies. Each of these diagrams 

represents an outlined shape of the body which graphically accounts 

for the data required for each of the three terms in Eqs. 19–14 or 

19–15, Fig. 19–4. These diagrams are particularly helpful in order to 

visualize the “moment” terms used in the principle of angular 

impulse and momentum, if application is about the IC or another 

point other than the body’s mass center G or a fixed point O.

Principle of Impulse and Momentum.
  Apply the three scalar equations of impulse and momentum.

  The angular momentum of a rigid body rotating about a fixed axis is the 

moment of mvG plus IG V about the axis. This is equal to HO = IO v, 

where IO is the moment of inertia of the body about the axis.

  All the forces acting on the body’s free-body diagram will create 

an impulse; however, some of these forces will do no work.

  Forces that are functions of time must be integrated to obtain  

the impulse.

  The principle of angular impulse and momentum is often used to 

eliminate unknown impulsive forces that are parallel or pass 

through a common axis, since the moment of these forces is zero 

about this axis.

Kinematics.
  If more than three equations are needed for a complete solution, 

it may be possible to relate the velocity of the body’s mass center 

to the body’s angular velocity using kinematics. If the motion 

appears to be complicated, kinematic (velocity) diagrams may be 

helpful in obtaining the necessary relation.
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The 20-lb disk shown in Fig. 19–5a is acted upon by a constant couple 

moment of 4 lb # ft and a force of 10 lb which is applied to a cord 

wrapped around its periphery. Determine the angular velocity of the 

disk two seconds after starting from rest. Also, what are the force 

components of reaction at the pin?

SOLUTION
Since angular velocity, force, and time are involved in the problems, 

we will apply the principles of impulse and momentum to the solution.

Free-Body Diagram. Fig. 19–5b. The disk’s mass center does not 

move; however, the loading causes the disk to rotate clockwise.

The moment of inertia of the disk about its fixed axis of rotation is

IA =
1

2
 mr 2 =

1

2
 a 20 lb

32.2 ft>s2
b (0.75 ft)2 = 0.1747 slug # ft2

Principle of Impulse and Momentum.

( S+ )  m(vAx)1 + � L
t2

t1

Fx dt = m(vAx)2

  0 + Ax(2 s) = 0

(+ c )   m(vAy)1 + � L
t2

t1

Fy dt = m(vAy)2

 0 + Ay(2 s) - 20 lb(2 s) - 10 lb(2 s) = 0

(c+)  IAv1 + � L
t2

t1

MA dt = IAv2

 0 + 4 lb # ft(2 s) + [10 lb(2 s)](0.75 ft) = 0.1747v2

Solving these equations yields

  Ax = 0 Ans.

  Ay = 30 lb Ans.

  v2 = 132 rad>sb  Ans.

EXAMPLE  19.2

0.75 ft

M � 4 lb � ft

F � 10 lb
(a)

A

Ax

Ay

0.75 ftA

20 lb

4 lb � ft

10 lb

 (b)

y

x

V

Fig. 19–5 
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981 N

G

P � (t � 10) N

A

NA

FA

vG

y

x

(b)

0.75 m

0.4 m

V

Fig. 19–6 

G

A

P � (t � 10) N

(a)

0.75 m

0.4 m

The 100-kg spool shown in Fig. 19–6a has a radius of gyration 

kG = 0.35 m. A cable is wrapped around the central hub of the spool, 

and a horizontal force having a variable magnitude of P = (t + 10) N 

is applied, where t is in seconds. If the spool is initially at rest, 

determine its angular velocity in 5 s. Assume that the spool rolls 

without slipping at A.

EXAMPLE  19.3

SOLUTION
Free-Body Diagram. From the free-body diagram, Fig. 19–6b, the 

variable force P will cause the friction force FA to be variable, and thus 

the impulses created by both P and FA must be determined by 

integration. Force P causes the mass center to have a velocity vG to the 

right, and so the spool has a clockwise angular velocity V.

Principle of Impulse and Momentum. A direct solution for V can 

be obtained by applying the principle of angular impulse and 

momentum about point A, the IC, in order to eliminate the unknown 

friction impulse.

(c+) IAv1 + � LMA dt = IAv2

0 + JL5 s

0

(t + 10) N dtR (0.75 m +  0.4 m) = [100 kg (0.35 m)2 +  (100 kg)(0.75 m)2]v2

62.5(1.15) = 68.5v2

 v2 = 1.05 rad>sb Ans.

NOTE: Try solving this problem by applying the principle of impulse 

and momentum about G and using the principle of linear impulse and 

momentum in the x direction.
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The cylinder B, shown in Fig. 19–7a has a mass of 6 kg. It is attached to 

a cord which is wrapped around the periphery of a 20-kg disk that has 

a moment of inertia IA = 0.40 kg # m2. If the cylinder is initially moving 

downward with a speed of 2 m>s, determine its speed in 3 s. Neglect the 

mass of the cord in the calculation.

EXAMPLE  19.4

B

vB � 2 m/s

0.2 m
A

(a)

vB

y

x

T

58.86 N

0.2 m

A

Ay

Ax

196.2 N

T

(b)

V

Fig. 19–7 

SOLUTION I
Free-Body Diagram. The free-body diagrams of the cylinder and 

disk are shown in Fig. 19–7b. All the forces are constant since the weight 

of the cylinder causes the motion. The downward motion of the 

cylinder, vB, causes V of the disk to be clockwise.

Principle of Impulse and Momentum. We can eliminate Ax and Ay 

from the analysis by applying the principle of angular impulse and 

momentum about point A. Hence

Disk

(c+) IAv1 + � LMA dt = IAv2

0.40 kg # m2(v1) + T(3 s)(0.2 m) = (0.40 kg # m2)v2

Cylinder

(+ c ) mB(vB)1 + � LFy dt = mB(vB)2

-6 kg(2 m>s) + T(3 s) - 58.86 N(3 s) = -6 kg(vB)2

Kinematics. Since v = vB>r, then v1 = (2 m>s)>(0.2 m) = 10 rad>s 

and v2 = (vB)2>0.2 m = 5(vB)2. Substituting and solving the equations 

simultaneously for (vB)2 yields

 (vB)2 = 13.0 m>s T  Ans.
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SOLUTION II
Impulse and Momentum Diagrams. We can obtain (vB)2 directly by 

considering the system consisting of the cylinder, the cord, and the disk. 

The impulse and momentum diagrams have been drawn to clarify 

application of the principle of angular impulse and momentum about 

point A, Fig. 19–7c.

Principle of Angular Impulse and Momentum. Realizing that 

v1 = 10 rad>s and v2 = 5(vB)2, we have

(c+)aa syst. angular

momentum
b

A1

+ aa syst. angular

impulse
b

A(1 - 2)

= aa syst. angular

momentum
b

A2

 (6 kg)(2 m>s)(0.2 m) + (0.40 kg # m2)(10 rad>s) + (58.86 N)(3 s)(0.2 m)

 = (6 kg)(vB)2(0.2 m) + (0.40 kg # m2)[5(vB)2]

 (vB)2 = 13.0 m>s T  Ans.

�

6 kg(2 m/s)

0.2 m

A �

58.86 N(3 s)

0.2 m

A
Ax (3 s)

Ay (3 s)

196.2 N(3 s)

6 kg(vB)2

0.2 m

A

0.40 kg � m2(10 rad/s) 0.40 kg � m2
V2

(c)

Fig. 19–7 (cont.)
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The Charpy impact test is used in materials testing to determine the energy 

absorption characteristics of a material during impact. The test is 

performed using the pendulum shown in Fig. 19–8a, which has a mass m, 

mass center at G, and a radius of gyration kG about G. Determine the 

distance rP from the pin at A to the point P where the impact with the 

specimen S should occur so that the horizontal force at the pin A is 

essentially zero during the impact. For the calculation, assume the 

specimen absorbs all the pendulum’s kinetic energy gained during the time 

it falls and thereby stops the pendulum from swinging when u = 0�.

SOLUTION
Free-Body Diagram. As shown on the free-body diagram,  

Fig. 19–8b, the conditions of the problem require the horizontal force 

at A to be zero. Just before impact, the pendulum has a clockwise 

angular velocity V1, and the mass center of the pendulum is moving to 

the left at (vG)1 = rv1.

Principle of Impulse and Momentum. We will apply the principle 

of angular impulse and momentum about point A. Thus,

 IAv1 + �LMA dt = IAv2

(c+)  IAv1 - aLF dtbrP = 0

  m(vG)1 + � LF dt = m(vG)2

( S+ )  -m(rv1) + LF dt = 0

Eliminating the impulse 1F dt and substituting IA = mkG
2 + mr 2 yields

[mkG
2 + mr 2]v1 - m(rv1)rP = 0

Factoring out mv1 and solving for rP, we obtain

 rP = r +
kG

2

r
 Ans.

NOTE: Point P, so defined, is called the center of percussion. By placing 

the striking point at P, the force developed at the pin will be minimized. 

Many sports rackets, clubs, etc. are designed so that collision with the 

object being struck occurs at the center of percussion. As a 

consequence, no “sting” or little sensation occurs in the hand of the 

player. (Also see Probs. 17–66 and 19–1.)

EXAMPLE  19.5

rP
A

S

G

P

(a)

_
r

u

y

x

A

Ay

Ax � 0

(b)

_
r

rP

G

P

W

F

vG

V

Fig. 19–8 
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P19–1. Determine the angular momentum of the 100-kg 

disk or rod about point G and about point O.

a)             

G

3 rad/s

No slipping

2 m

O

b)

                 
 

G

O

4 rad/s

1.5 m

1.5 m

c)

            

G

4 rad/s

2 mO

d)            

G

O

1 m2 m

3 rad/s

1 m

P19–2. Determine the angular impulse about point O 

for t = 3 s.

a)        

 

O

2 m

1 m

500 N

5 3

4

b )      

 

 F

t (s)

F (N)

20

2 3

2 m

O

c)   

 

4 m
O

5
3

4

F � (2t � 2) N

d)                             

2 mO

M � (30 t2) N�m

PRELIMINARY PROBLEMS

Prob. P19–1 Prob. P19–2
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G

P � 150 N

0.3 m

0.2 m

Prob. F19–5 

F19–4. Gears A and B of mass 10 kg and 50 kg have radii 

of gyration about their respective mass centers of 

kA = 80 mm and kB = 150 mm. If gear A is subjected to the 

couple moment M = 10 N # m when it is at rest, determine 

the angular velocity of gear B when t � 5 s.

F19–2. The 300@kg wheel has a radius of gyration about its 

mass center O of kO = 400 mm. If the wheel is subjected to 

a couple moment of M = 300 N # m, determine its angular 

velocity 6 s after it starts from rest and no slipping occurs. 

Also, determine the friction force that the ground applies to 

the wheel.

M � (3t2) N � m

O

Prob. F19–1 

F19–1. The 60@kg wheel has a radius of gyration about its 

center O of kO = 300 mm. If it is subjected to a couple moment 

of M = (3t2) N # m, where t is in seconds, determine the 

angular velocity of the wheel when t = 4 s, starting from rest.

O

0.6 m

M � 300 N � m

Prob. F19–2 

F19–3. If rod OA of negligible mass is subjected to the 

couple moment M = 9 N # m, determine the angular 

velocity of the 10@kg inner gear t = 5 s after it starts from 

rest. The gear has a radius of gyration about its mass center 

of kA = 100 mm, and it rolls on the fixed outer gear, B. 

Motion occurs in the horizontal plane. 

B

O

0.6 m
0.15 m

A M � 9 N � m

Prob. F19–3 

B

0.2 m

0.1 m

M � 10 N ·  m

A B

Prob. F19–4 

F19–5. The 50@kg spool is subjected to a horizontal force of 

P = 150 N. If the spool rolls without slipping, determine its 

angular velocity 3 s after it starts from rest. The radius of 

gyration of the spool about its center of mass is kG = 175 mm.

F19–6. The reel has a weight of 150 lb and a radius of 

gyration about its center of gravity of kG = 1.25 ft. If it is 

subjected to a torque of M = 25 lb # ft, and starts from rest 

when the torque is applied, determine its angular velocity in 

3 seconds. The coefficient of kinetic friction between the 

reel and the horizontal plane is mk = 0.15.

1.5 ft

1 ft

M � 25 lb � ft
G

A

Prob. F19–6 

FUNDAMENTAL PROBLEMS
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19–1. The rigid body (slab) has a mass m and rotates with 

an angular velocity V about an axis passing through the 

fixed point O. Show that the momenta of all the particles 

composing the body can be represented by a single vector 

having a magnitude mvG and acting through point P, called 

the center of percussion, which lies at a distance 

rP>G = k2
G>rG>O from the mass center G. Here kG is the radius 

of gyration of the body, computed about an axis 

perpendicular to the plane of motion and passing through G.

mvG

vG

G

V

P
rP/G

rG/O

O

Prob. 19–1

19–2. At a given instant, the body has a linear momentum 

L = mvG and an angular momentum HG = IGV computed 

about its mass center. Show that the angular momentum of 

the body computed about the instantaneous center of zero 

velocity IC can be expressed as HIC = IICV, where IIC 

represents the body’s moment of inertia computed about 

the instantaneous axis of zero velocity. As shown, the IC is 

located at a distance rG>IC away from the mass center G.

G IGV

rG/IC

IC

mvG

Prob. 19–2

19–3. Show that if a slab is rotating about a fixed axis 

perpendicular to the slab and passing through its mass 

center G, the angular momentum is the same when 

computed about any other point P.

P

G

V

Prob. 19–3

*19–4. The 40-kg disk is rotating at V = 100 rad>s. When 

the force P is applied to the brake as indicated by the graph. 

If the coefficient of kinetic friction at B is mk = 0.3, 

determine the time t needed to stay the disk from rotating. 

Neglect the thickness of the brake.

150 mm
O

300 mm300 mm

200 mm

A

P

B

P (N)

500

2
t (s)

V

Prob. 19–4

PROBLEMS



534  CHAPTER 19  PLANAR KINET ICS OF A RIG ID BODY: IMPULSE AND MOMENTUM

19

19–5. The impact wrench consists of a slender 1-kg rod AB 

which is 580 mm long, and cylindrical end weights at A  

and B that each have a diameter of 20 mm and a mass  

of 1 kg. This assembly is free to turn about the handle and 

socket, which are attached to the lug nut on the wheel of a 

car. If the rod AB is given an angular velocity of 4 rad>s and 

it strikes the bracket C on the handle without rebounding, 

determine the angular impulse imparted to the lug nut.

A

B

300 mm

300 mm

C

Prob. 19–5

19–6. The airplane is traveling in a straight line with a 

speed of 300 km>h, when the engines A and B produce a 

thrust of TA = 40 kN and T B = 20 kN, respectively. 

Determine the angular velocity of the airplane in t = 5 s. The 

plane has a mass of 200 Mg, its center of mass is located 

at G, and its radius of gyration about G is kG = 15 m.

8 m

8 m

A

G

B

TA � 40 kN

TB � 20 kN

Prob. 19–6

19–7. The double pulley consists of two wheels which are 

attached to one another and turn at the same rate. The 

pulley has a mass of 15 kg and a radius of gyration of 

kO = 110 mm. If the block at A has a mass of 40 kg, 

determine the speed of the block in 3 s after a constant 

force of 2 kN is applied to the rope wrapped around the 

inner hub of the pulley. The block is originally at rest.

200 mm

75 mm
O

A

2 kN

Prob. 19–7

*19–8. The assembly weighs 10 lb and has a radius of 

gyration kG = 0.6 ft about its center of mass G. The kinetic 

energy of the assembly is 31 ft # lb when it is in the position 

shown. If it rolls counterclockwise on the surface without 

slipping, determine its linear momentum at this instant.

1 ft

1 ft0.8 ft

G

Prob. 19–8



 19.2 PRINCIPLE OF IMPULSE AND MOMENTUM 535

19

19–9. The disk has a weight of 10 lb and is pinned at its 

center O. If a vertical force of P = 2 lb is applied to the cord 

wrapped around its outer rim, determine the angular 

velocity of the disk in four seconds starting from rest. 

Neglect the mass of the cord.

0.5 ft

O

P

Prob. 19–9

19–10. The 30-kg gear A has a radius of gyration about its 

center of mass O of kO = 125 mm. If the 20-kg gear rack B 

is subjected to a force of P = 200 N, determine the time 

required for the gear to obtain an angular velocity of  

20 rad>s, starting from rest. The contact surface between the 

gear rack and the horizontal plane is smooth.

P � 200 NB
A

O

0.15 m

Prob. 19–10

19–11. The pulley has a weight of 8 lb and may be treated 

as a thin disk. A cord wrapped over its surface is subjected 

to forces TA = 4 lb and TB = 5 lb. Determine the angular 

velocity of the pulley when t = 4 s if it starts from rest when 

t = 0. Neglect the mass of the cord.

TB � 5 lb TA � 4 lb

0.6 ft

Prob. 19–11

*19–12. The 40-kg roll of paper rests along the wall where 

the coefficient of kinetic friction is mk = 0.2. If a vertical 

force of P = 40 N is applied to the paper, determine the 

angular velocity of the roll when t = 6 s starting from rest. 

Neglect the mass of the unraveled paper and take the radius 

of gyration of the spool about the axle O to be kO = 80 mm.

12

5

13

O

B

120 mm

P � 40 N

A

Prob. 19–12
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19–13. The slender rod has a mass m and is suspended at 

its end A by a cord. If the rod receives a horizontal blow 

giving it an impulse I at its bottom B, determine the location y 

of the point P about which the rod appears to rotate during 

the impact.

A

BI

P

l

y

Prob. 19–13

19–14. The rod of length L and mass m lies on a smooth 

horizontal surface and is subjected to a force P at its end A 

as shown. Determine the location d of the point about 

which the rod begins to turn, i.e, the point that has zero 

velocity.

A

P

L

d

Prob. 19–14

19–15. A 4-kg disk A is mounted on arm BC, which has a 

negligible mass. If a torque of M = (5e0.5t ) N # m, where t is 

in seconds, is applied to the arm at C, determine the angular 

velocity of BC in 2 s starting from rest. Solve the problem 

assuming that (a) the disk is set in a smooth bearing at B so 

that it moves with curvilinear translation, (b) the disk is 

fixed to the shaft BC, and (c) the disk is given an initial 

freely spinning angular velocity of VD = {−80k} rad>s prior 

to application of the torque.

250 mm

M � (5e0.5t) N � m60 mm

z

C

A B

Prob. 19–15

*19–16. The frame of a tandem drum roller has a weight of 

4000 lb excluding the two rollers. Each roller has a weight of 

1500 lb and a radius of gyration about its axle of 1.25 ft. If a 

torque of M = 300 lb # ft is supplied to the rear roller A, 

determine the speed of the drum roller 10 s later, starting 

from rest.

1.5 ft1.5 ft

A B

M � 300 lb�ft

Prob. 19–16
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19–17. The 100-lb wheel has a radius of gyration of 

kG = 0.75 ft. If the upper wire is subjected to a tension of 

T = 50 lb, determine the velocity of the center of the wheel 

in 3 s, starting from rest. The coefficient of kinetic friction 

between the wheel and the surface is mk = 0.1.

1 ft

T

G

0.5 ft

Prob. 19–17

19–18. The 4-kg slender rod rests on a smooth floor. If it is 

kicked so as to receive a horizontal impulse I = 8 N # s at 

point A as shown, determine its angular velocity and the 

speed of its mass center.

2 m

1.75 m

60�

I � 8 N � s

A

Prob. 19–18

19–19. The double pulley consists of two wheels which are 

attached to one another and turn at the same rate. The 

pulley has a mass of 15 kg and a radius of gyration 

kO = 110 mm. If the block at A has a mass of 40 kg, 

determine the speed of the block in 3 s after a constant 

force F = 2 kN is applied to the rope wrapped around the 

inner hub of the pulley. The block is originally at rest. 

Neglect the mass of the rope.

Prob. 19–19

*19–20. The 100-kg spool is resting on the inclined surface 

for which the coefficient of kinetic friction is mk = 0.1. 

Determine the angular velocity of the spool when t = 4 s 

after it is released from rest. The radius of gyration about 

the mass center is kG = 0.25 m.

30�

G

A

0.2 m

0.4 m

Prob. 19–20
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19–21. The spool has a weight of 30 lb and a radius of 

gyration kO = 0.45 ft. A cord is wrapped around its inner 

hub and the end subjected to a horizontal force P = 5 lb. 

Determine the spool’s angular velocity in 4 s starting from 

rest. Assume the spool rolls without slipping.

P � 5 lb

0.9 ft

0.3 ft

O

A

Prob. 19–21

19–22. The two gears A and B have weights and radii of 

gyration of W A = 15 lb, kA = 0.5 ft and W B = 10 lb, 

kB = 0.35 ft, respectively. If a motor transmits a couple 

moment to gear B of M = 2(1 -  e- 0.5t ) lb # ft, where t is in 

seconds, determine the angular velocity of gear A in t = 5 s, 

starting from rest.

0.8 ft

A
B

0.5 ftM

Prob. 19–22

19–23. The hoop (thin ring) has a mass of 5 kg and is 

released down the inclined plane such that it has a backspin 

v = 8 rad>s and its center has a velocity vG = 3 m>s as 

shown. If the coefficient of kinetic friction between the 

hoop and the plane is mk = 0.6, determine how long the 

hoop rolls before it stops slipping.

G

0.5 m� 3 m/svG

30�

v � 8 rad/s

Prob. 19–23

*19–24. The 30-kg gear is subjected to a force of 

P = (20t) N, where t is in seconds. Determine the angular 

velocity of the gear at t = 4 s, starting from rest. Gear rack B 

is fixed to the horizontal plane, and the gear’s radius of 

gyration about its mass center O is kO = 125 mm.

P � (20t) N

B A

O

150 mm

Prob. 19–24
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19–25. The 30-lb flywheel A has a radius of gyration about 

its center of 4 in. Disk B weighs 50 lb and is coupled to the 

flywheel by means of a belt which does not slip at its 

contacting surfaces. If a motor supplies a counterclockwise 

torque to the flywheel of M = (50t) lb # ft, where t is in 

seconds, determine the time required for the disk to attain 

an angular velocity of 60 rad>s starting from rest.

6 in.

A

9 in.

B

M � (50t) lb � ft

Prob. 19–25

19–26. If the shaft is subjected to a torque of M =  

(15t2) N # m, where t is in seconds, determine the angular 

velocity of the assembly when t = 3 s, starting from rest. 

Rods AB and BC each have a mass of 9 kg.

1 m

C

B

A

M � (15t2) N � m1 m

Prob. 19–26

19–27. The double pulley consists of two wheels which are 

attached to one another and turn at the same rate. The 

pulley has a mass of 15 kg and a radius of gyration of  

kO = 110 mm. If the block at A has a mass of 40 kg and the 

container at B has a mass of 85 kg, including its contents, 

determine the speed of the container when t = 3 s after it is 

released from rest.

75 mm

200 mm

A

C

B

O

Prob. 19–27

*19–28. The crate has a mass mc. Determine the constant 

speed v0 it acquires as it moves down the conveyor. The 

rollers each have a radius of r, mass m, and are spaced d 

apart. Note that friction causes each roller to rotate when 

the crate comes in contact with it.

A

d

30°

Prob. 19–28
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19.3 Conservation of Momentum

Conservation of Linear Momentum. If the sum of all the 

linear impulses acting on a system of connected rigid bodies is zero in a 

specific direction, then the linear momentum of the system is constant, or 

conserved in this direction, that is,

  aa syst. linear

momentum
b

1

= aa syst. linear

momentum
b

2

 (19–16)

This equation is referred to as the conservation of linear momentum.

Without introducing appreciable errors in the calculations, it may 

be possible to apply Eq. 19–16 in a specified direction for which  

the linear impulses are small or nonimpulsive. Specifically, nonimpulsive 

forces occur when small forces act over very short periods of time. 

Typical examples include the force of a slightly deformed spring,  

the initial contact force with soft ground, and in some cases the weight 

of the body.

Conservation of Angular Momentum. The angular momentum 

of a system of connected rigid bodies is conserved about the system’s 

center of mass G, or a fixed point O, when the sum of all the angular 

impulses about these points is zero or appreciably small (nonimpulsive). 

The third of Eqs. 19–15 then becomes

 aa syst. angular

momentum
b

O1

= aa syst. angular

momentum
b

O2

 (19–17)

This equation is referred to as the conservation of angular momentum. 

In the case of a single rigid body, Eq. 19–17 applied to point G becomes 

(IGv)1 = (IGv)2. For example, consider a swimmer who executes a 

somersault after jumping off a diving board. By tucking his arms and 

legs in close to his chest, he decreases his body’s moment of inertia and 

thus increases his angular velocity (IGv must be constant). If he 

straightens out just before entering the water, his body’s moment of 

inertia is increased, and so his angular velocity decreases. Since the 

weight of his body creates a linear impulse during the time of motion, 

this example also illustrates how the angular momentum of a body can 

be conserved and yet the linear momentum is not. Such cases occur 

whenever the external forces creating the linear impulse pass through 

either the center of mass of the body or a fixed axis of rotation.
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Procedure for Analysis

The conservation of linear or angular momentum should be applied 

using the following procedure.

Free-Body Diagram.
  Establish the x, y inertial frame of reference and draw the free-

body diagram for the body or system of bodies during the time of 

impact. From this diagram classify each of the applied forces as 

being either “impulsive” or “nonimpulsive.”

  By inspection of the free-body diagram, the conservation of linear 
momentum applies in a given direction when no external 

impulsive forces act on the body or system in that direction; 

whereas the conservation of angular momentum applies about a 

fixed point O or at the mass center G of a body or system of 

bodies when all the external impulsive forces acting on the body 

or system create zero moment (or zero angular impulse) about O 

or G.

  As an alternative procedure, draw the impulse and momentum 

diagrams for the body or system of bodies. These diagrams are 

particularly helpful in order to visualize the “moment” terms 

used in the conservation of angular momentum equation, when it 

has been decided that angular momenta are to be computed 

about a point other than the body’s mass center G.

Conservation of Momentum.
  Apply the conservation of linear or angular momentum in the 

appropriate directions.

Kinematics.
  If the motion appears to be complicated, kinematic (velocity) 

diagrams may be helpful in obtaining the necessary kinematic 

relations.
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98.1   t

G

A
r¿ � (0.2 � 0.03) m

m(vG)1

G

A

(b)

G

A

d

r � 0.2 m

_
+

F dt

m(vG)2

�

u

IGV2

IG V1

�

The 10-kg wheel shown in Fig. 19–9a has a moment of inertia 

IG = 0.156 kg # m2. Assuming that the wheel does not slip or rebound, 

determine the minimum velocity vG it must have to just roll over the 

obstruction at A.

SOLUTION
Impulse and Momentum Diagrams. Since no slipping or 

rebounding occurs, the wheel essentially pivots about point A during 

contact. This condition is shown in Fig. 19–9b, which indicates, 

respectively, the momentum of the wheel just before impact, the 

impulses given to the wheel during impact, and the momentum of the 

wheel just after impact. Only two impulses (forces) act on the wheel. 

By comparison, the force at A is much greater than that of the weight, 

and since the time of impact is very short, the weight can be considered 

nonimpulsive. The impulsive force F at A has both an unknown 

magnitude and an unknown direction u. To eliminate this force from 

the analysis, note that angular momentum about A is essentially 

conserved since (98.1�t)d � 0.

Conservation of Angular Momentum. With reference to Fig. 19–9b,

(c+)  (HA)1 = (HA)2

 r	m(vG)1 + IGv1 = rm(vG)2 + IGv2

(0.2 m - 0.03 m)(10 kg)(vG)1 + (0.156 kg # m2)(v1) =
 (0.2 m)(10 kg)(vG)2 + (0.156 kg # m2)(v2)

Kinematics. Since no slipping occurs, in general v = vG>r =  

vG>0.2 m = 5vG. Substituting this into the above equation and 

simplifying yields

 (vG)2 = 0.8921(vG)1 (1)

Conservation of Energy.* In order to roll over the obstruction, the 

wheel must pass position 3 shown in Fig. 19–9c. Hence, if (vG)2 [or (vG)1] 

is to be a minimum, it is necessary that the kinetic energy of the wheel 

at position 2 be equal to the potential energy at position 3. Placing the 

datum through the center of gravity, as shown in the figure, and applying 

the conservation of energy equation, we have5T26 + 5V26 = 5T36 + 5V3651
2(10 kg)(vG)2

2 + 1
2(0.156 kg # m2)v2

26 + 506 =506 + 5(98.1 N)(0.03 m)6
Substituting v2 = 5(vG)2 and Eq. 1 into this equation, and solving,

 (vG)1 = 0.729 m>s S  Ans.

EXAMPLE  19.6

(c)

G

(vG)2

0.03 m

98.1 N

Datum

2

3V2

Fig. 19–9 

*This principle does not apply during impact, since energy is lost during the collision. 

However, just after impact, as in Fig. 19–9c, it can be used.
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G
(vG)2

(vB)2

V2

O

0.5 m

0.75 m

(c)

Fig. 19–10 

0.25 m

O

0.75 mB

vB � 400 m/s

30�

(a)

EXAMPLE  19.7

The 5-kg slender rod shown in Fig. 19–10a is pinned at O and is 

initially at rest. If a 4-g bullet is fired into the rod with a velocity of 

400 m>s, as shown in the figure, determine the angular velocity of the 

rod just after the bullet becomes embedded in it.

SOLUTION
Impulse and Momentum Diagrams. The impulse which the bullet 

exerts on the rod can be eliminated from the analysis, and the angular 

velocity of the rod just after impact can be determined by considering 

the bullet and rod as a single system. To clarify the principles involved, 

the impulse and momentum diagrams are shown in Fig. 19–10b. The 

momentum diagrams are drawn just before and just after impact. During 

impact, the bullet and rod exert equal but opposite internal impulses 

at A. As shown on the impulse diagram, the impulses that are external 

to the system are due to the reactions at O and the weights of the bullet 

and rod. Since the time of impact, �t, is very short, the rod moves only 

a slight amount, and so the “moments” of the weight impulses about 

point O are essentially zero. Therefore angular momentum is conserved 

about this point.

�

O

30�

(b)

mB(vB)1
0.75 m

A

O

G
49.05    t

0.0392    t

Oy    t

Ox    t�

�

�

�

� G mR(vG)2

mB(vB)2

IG V2

O

0.5 m
0.75 m

Conservation of Angular Momentum. From Fig. 19–10b, we have

(a+) �(HO)1 = �(HO)2

mB(vB)1 cos 30�(0.75 m) = mB(vB)2(0.75 m) + mR(vG)2(0.5 m) + IGv2

(0.004 kg)(400 cos 30� m>s)(0.75 m) =
(0.004 kg)(vB)2(0.75 m) + (5 kg)(vG)2(0.5 m) + 3 1

12(5 kg)( 1 m)24v2 (1)

or

1.039 = 0.003(vB)2 + 2.50(vG)2 + 0.4167v2

Kinematics. Since the rod is pinned at O, from Fig. 19–9c we have

(vG)2 = (0.5 m)v2 (vB)2 = (0.75 m)v2

Substituting into Eq. 1 and solving yields

 v2 = 0.623 rad>sd Ans.
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*19.4 Eccentric Impact

The concepts involving central and oblique impact of particles were 

presented in Sec. 15.4. We will now expand this treatment and discuss 

the  eccentric impact of two bodies. Eccentric impact occurs when the 

line connecting the mass centers of the two bodies does not coincide with 

the line of impact.*  This type of impact often occurs when one or both of the 

bodies are constrained to rotate about a fixed axis. Consider, for example, 

the collision at C between the two bodies A and B, shown in Fig. 19–11a. It 

is assumed that just before collision B is rotating counterclockwise with an 

angular velocity (VB)1, and the velocity of the contact point C located on A 

is (uA)1. Kinematic diagrams for both bodies just before collision are shown 

in Fig. 19–11b. Provided the bodies are smooth, the impulsive forces they 

exert on each other are directed along the line of impact. Hence, the 

component of velocity of point C on body B, which is directed along the line 

of impact, is (vB)1 = (vB)1r, Fig. 19–11b. Likewise, on body A the component 

of velocity (uA)1 along the line of impact is (vA)1. In order for a collision to 

occur, (vA)1 7 (vB)1.

During the impact an equal but opposite impulsive force P is exerted 

between the bodies which deforms their shapes at the point of contact. The 

resulting impulse is shown on the impulse diagrams for both bodies, Fig. 19–11c. 

Note that the impulsive force at point C on the rotating body creates 

impulsive pin reactions at O. On these diagrams it is assumed that the 

impact creates forces which are much larger than the nonimpulsive weights 

of the bodies, which are not shown. When the deformation at point C is a 

maximum, C on both the bodies moves with a common velocity v along the 

line of impact, Fig. 19–11d. A period of restitution then occurs in which the 

bodies tend to regain their original shapes. The restitution phase creates an 

equal but opposite impulsive force R acting between the bodies as shown 

on the impulse diagram, Fig. 19–11e. After restitution the bodies move apart 

such that point C on body B has a velocity (vB)2 and point C on body A 

has a velocity (uA)2, Fig. 19–11f, where (vB)2 7 (vA)2.

In general, a problem involving the impact of two bodies requires 

determining the two unknowns (vA)2 and (vB)2, assuming (vA)1 and (vB)1 are 

known (or can be determined using kinematics, energy methods, the 

equations of motion, etc.). To solve such problems, two equations must be 

written. The first equation generally involves application of the conservation 
of angular momentum to the two bodies. In the case of both bodies A and B, 

we can state that angular momentum is conserved about point O since the 

impulses at C are internal to the system and the impulses at O create zero 

moment (or zero angular impulse) about O. The second equation can be 

obtained using the definition of the coefficient of restitution, e, which is a 

ratio of the restitution impulse to the deformation impulse.

Here is an example of eccentric impact 
occurring between this bowling ball  
and pin. (© R.C. Hibbeler)

A
B

C

O

Line
of impact

Plane of impact

(a)

Fig. 19–11

*When these lines coincide, central impact occurs and the problem can be analyzed as 

discussed in Sec. 15.4.
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A

B

C

O

(b)

(vB)1 � (vB)1r

r

(vA)1

Velocity
before collision

C

(VB)1

(uA)1

A

B

C

O

(c)

r

Deformation
impulse

C

� Oy dt

� Ox dt

� Pdt

� Pdt A B

C

O

(d)

v � vr

r

u

v

Velocity at maximum
deformation

V

� O¿y dt

� O¿x dt

A

B

C

O

(e)

r

Restitution
impulse

C

� Rdt

� Rdt

Is is important to realize, however, that this analysis has only a very 
limited application in engineering, because values of e for this case have 
been found to be highly sensitive to the material, geometry, and the velocity 
of each of the colliding bodies. To establish a useful form of the coefficient 

of restitution equation we must first apply the principle of angular 

impulse and momentum about point O to bodies B and A separately. 

Combining the results, we then obtain the necessary equation. Proceeding 

in this manner, the principle of impulse and momentum applied to body B 

from the time just before the collision to the instant of maximum 

deformation, Figs. 19–11b, 19–11c, and 19–11d, becomes

(a+) IO(vB)1 + rLP dt = IOv (19–18)

Here IO is the moment of inertia of body B about point O. Similarly, 

applying the principle of angular impulse and momentum from the 

instant of maximum deformation to the time just after the impact, Figs. 19–11d, 

19–11e, and 19–11f, yields

(a+) IOv + rLR dt = IO(vB)2 (19–19)

Solving Eqs. 19–18 and 19–19 for 1P dt and 1R dt, respectively, and 

formulating e, we have

e = LR dt

LP dt
=

r(vB)2 - rv

rv - r(vB)1

=
(vB)2 - v

v - (vB)1

A

B

C

O

(f)

(vB)2 � (vB)2r

r

(vA)2

Velocity
after collision

(uA)2
C

(VB)2

Fig. 19–11 (cont.) 
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In the same manner, we can write an equation which relates the 

magnitudes of velocity (vA)1 and (vA)2 of body A. The result is

e =
v - (vA)2

(vA)1 - v

Combining the above two equations by eliminating the common velocity v 

yields the desired result, i.e.,

(+ Q) e =
(vB)2 - (vA)2

(vA)1 - (vB)1
  (19–20)

This equation is identical to Eq. 15–11, which was derived for the central 

impact between two particles. It states that the coefficient of restitution 

is equal to the ratio of the relative velocity of separation of the points of 

contact (C) just after impact to the relative velocity at which the points 

approach one another just before impact. In deriving this equation, we 

assumed that the points of contact for both bodies move up and to the 

right both before and after impact. If motion of any one of the contacting 

points occurs down and to the left, the velocity of this point should be 

considered a negative quantity in Eq. 19–20.

During impact the columns of many highway signs are intended to break out of their 
supports and easily collapse at their joints. This is shown by the slotted connections at 
their base and the breaks at the column’s midsection. (© R.C. Hibbeler) 
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The 10-lb slender rod is suspended from the pin at A, Fig. 19–12a. If a 

2-lb ball B is thrown at the rod and strikes its center with a velocity of 

30 ft>s, determine the angular velocity of the rod just after impact. The 

coefficient of restitution is e = 0.4.

SOLUTION
Conservation of Angular Momentum.  Consider the ball and rod as 

a system, Fig. 19–12b. Angular momentum is conserved about point A 

since the impulsive force between the rod and ball is internal. Also, the 

weights of the ball and rod are nonimpulsive. Noting the directions of 

the velocities of the ball and rod just after impact as shown on the 

kinematic diagram, Fig. 19–12c, we require

(a+)  (HA)1 = (HA)2

 mB(vB)1(1.5 ft) = mB(vB)2(1.5 ft) + mR(vG)2(1.5 ft) + IGv2

a 2 lb

32.2 ft>s2
b 130 ft>s2(1.5 ft) = a 2 lb

32.2 ft>s2
b (vB)2(1.5 ft) +

a 10 lb

32.2 ft>s2
b (vG)2(1.5 ft) + c 1

12
 a 10 lb

32.2 ft>s2
b (3 ft)2 dv2

Since (vG)2 = 1.5v2 then

 2.795 = 0.09317(vB)2 + 0.9317v2 (1)

Coefficient of Restitution. With reference to Fig. 19–12c, we have

( S+ ) e =
(vG)2 - (vB)2

(vB)1 - (vG)1

 0.4 =
(1.5 ft)v2 - (vB)2

30 ft>s - 0

  12.0 = 1.5v2 - (vB)2 (2)

Solving Eqs. 1 and 2, yields

 (vB)2 = -6.52 ft>s = 6.52 ft>s d

  v2 = 3.65 rad>sd Ans.

A

(b)

Ay

Ax

y

x

2 lb
10 lb

1.5 ft

1.5 ft

1.5 ft

30 ft/s

A

(a)

B

1.5 ft
(vB)1 � 30 ft/s

A

(c)

B

G
(vG)2

V2

(vB)2

Fig. 19–12 
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19–29. The turntable T of a record player has a mass of 

0.75 kg and a radius of gyration kz = 125 mm. It is turning 
freely at vT = 2 rad>s when a 50-g record (thin disk) falls on 

it. Determine the final angular velocity of the turntable just 

after the record stops slipping on the turntable.

150 mm

z

vT � 2 rad/s

T

Prob. 19–29

19–30. The 10-g bullet having a velocity of 800 m>s is fired 

into the edge of the 5-kg disk as shown. Determine the 

angular velocity of the disk just after the bullet becomes 

embedded into its edge. Also, calculate the angle u the disk 

will swing when it stops. The disk is originally at rest. Neglect 

the mass of the rod AB.

19–31. The 10-g bullet having a velocity of 800 m>s is fired 

into the edge of the 5-kg disk as shown. Determine the 

angular velocity of the disk just after the bullet becomes 

embedded into its edge. Also, calculate the angle u the disk 

will swing when it stops. The disk is originally at rest. The 

rod AB has a mass of 3 kg.

 0.4 m

2 m

B

v � 800 m/s

A

Probs. 19–30/31

*19–32. The circular disk has a mass m and is suspended at  

A by the wire. If it receives a horizontal impulse I at its 

edge B, determine the location y of the point P about which 

the disk appears to rotate during the impact.

B

A

P

I

y

a

Prob. 19–32

19–33. The 80-kg man is holding two dumbbells while 

standing on a turntable of negligible mass, which turns 

freely about a vertical axis. When his arms are fully 

extended, the turntable is rotating with an angular velocity 

of 0.5 rev>s. Determine the angular velocity of the man 

when he retracts his arms to the position shown. When his 

arms are fully extended, approximate each arm as a uniform 

6-kg rod having a length of 650 mm, and his body as a 68-kg 

solid cylinder of 400-mm diameter. With his arms in the 

retracted position, assume the man is an 80-kg solid cylinder 

of 450-mm diameter. Each dumbbell consists of two 5-kg 

spheres of negligible size.

0.65 m
0.20 m

0.3 m 0.3 m

Prob. 19–33

PROBLEMS
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19–34. The platform swing consists of a 200-lb flat plate 

suspended by four rods of negligible weight. When the 

swing is at rest, the 150-lb man jumps off the platform when 

his center of gravity G is 10 ft from the pin at A. This is done 

with a horizontal velocity of 5 ft>s, measured relative to the 

swing at the level of G. Determine the angular velocity he 

imparts to the swing just after jumping off.

4 ft

A

G

10 ft

11 ft

Prob. 19–34

19–35. The 2-kg rod ACB supports the two 4-kg disks at its 

ends. If both disks are given a clockwise angular velocity 

(vA)1 = (vB)1 = 5 rad>s while the rod is held stationary and 

then released, determine the angular velocity of the rod 

after both disks have stopped spinning relative to the rod 

due to frictional resistance at the pins A and B. Motion is in 

the horizontal plane. Neglect friction at pin C.

B

0.15 m0.15 m

A
C

0.75m 0.75m

ω(    B)
1

ω(    A)
1

Prob. 19–35

*19–36. The satellite has a mass of 200 kg and a radius of 

gyration about z axis of kz = 0.1 m, excluding the two solar 

panels A and B. Each solar panel has a mass of 15 kg and 

can be approximated as a thin plate. If the satellite is 

originally spinning about the z axis at a constant rate 

vz = 0.5 rad>s when u = 90�, determine the rate of spin if 

both panels are raised and reach the upward position, 

u = 0�, at the same instant.

0.3 m

1.5 m
0.2 m

u � 90�

A

B

z

y

x

vz

Prob. 19–36

19–37. Disk A has a weight of 20 lb. An inextensible cable 

is attached to the 10-lb weight and wrapped around the 

disk. The weight is dropped 2 ft before the slack is taken up. 

If the impact is perfectly elastic, i.e., e = 1, determine the 

angular velocity of the disk just after impact.

0.5 ft

A

10 lb

Prob. 19–37
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19–38. The plank has a weight of 30 lb, center of gravity  

at G, and it rests on the two sawhorses at A and B. If the end D 

is raised 2 ft above the top of the sawhorses and is released 

from rest, determine how high end C will rise from the top 

of the sawhorses after the plank falls so that it rotates 

clockwise about A, strikes and pivots on the sawhorse at B, 

and rotates clockwise off the sawhorse at A.

A

C DG

B

3 ft 3 ft

2 ft

1.5 ft 1.5 ft

Prob. 19–38

19–39. The 12-kg rod AB is pinned to the 40-kg disk. If the 

disk is given an angular velocity vD = 100 rad>s while the 

rod is held stationary, and the assembly is then released, 

determine the angular velocity of the rod after the disk has 

stopped spinning relative to the rod due to frictional 

resistance at the bearing B. Motion is in the horizontal 
plane. Neglect friction at the pin A.

A B

2 m

0.3 m

vD

Prob. 19–39

*19–40. A thin rod of mass m has an angular velocity V0 

while rotating on a smooth surface. Determine its new 

angular velocity just after its end strikes and hooks onto the 

peg and the rod starts to rotate about P without rebounding. 

Solve the problem (a) using the parameters given, (b) 

setting m = 2 kg, v0 = 4 rad>s, l = 1.5 m.

l

P

v0 

Prob. 19–40

19–41. Tests of impact on the fixed crash dummy are 

conducted using the 300-lb ram that is released from rest at 

u = 30�, and allowed to fall and strike the dummy at 

u = 90�. If the coefficient of restitution between the 

dummy and the ram is e = 0.4, determine the angle u to 

which the ram will rebound before momentarily coming  

to rest.

u

10 ft 10 ft

Prob. 19–41
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19–42. The vertical shaft is rotating with an angular 

velocity of 3 rad>s when u = 0�. If a force F is applied to the 

collar so that u = 90�, determine the angular velocity of the 

shaft. Also, find the work done by force F. Neglect the mass 

of rods GH and EF and the collars I and J. The rods AB  

and CD each have a mass of 10 kg.

z

A

G

HF

F

D

E

C

B

I

0.3 m 0.3 m

0.3 m 0.3 m

J

0.1 m0.1 m
v

u u

Prob. 19–42

19–43. The mass center of the 3-lb ball has a velocity of 

(vG)1 = 6 ft>s when it strikes the end of the smooth 5-lb 

slender bar which is at rest. Determine the angular velocity 

of the bar about the z axis just after impact if e = 0.8.

(vG)1 � 6 ft/s

r � 0.5 ft

G

2 ft

0.5 ft

z

2 ft

OB

A

Prob. 19–43

*19–44. The pendulum consists of a slender 2-kg rod AB 

and 5-kg disk. It is released from rest without rotating. 

When it falls 0.3 m, the end A strikes the hook S, which 

provides a permanent connection. Determine the angular 

velocity of the pendulum after it has rotated 90�. Treat the 

pendulum’s weight during impact as a nonimpulsive force.

A B 0.2 m
0.3 m

0.5 m

S

Prob. 19–44

19–45. The 10-lb block is sliding on the smooth surface 

when the corner D hits a stop block S. Determine the 

minimum velocity v the block should have which would 

allow it to tip over on its side and land in the position 

shown. Neglect the size of S. Hint: During impact consider 

the weight of the block to be nonimpulsive.

1 ft

v

A

A B

CDS

B C

D

1 ft

Prob. 19–45

19–46. Determine the height h at which a billiard ball of 

mass m must be struck so that no frictional force develops 

between it and the table at A. Assume that the cue C only 

exerts a horizontal force P on the ball.

A

P

h

Cr

Prob. 19–46
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19–47. The pendulum consists of a 15-kg solid ball and 

6-kg rod. If it is released from rest when u1 = 90�, determine 

the angle u2 after the ball strikes the wall, rebounds, and the 

pendulum swings up to the point of momentary rest. Take 

e = 0.6.

100 mm

300 mm

2 m

A

u

Prob. 19–47

*19–48. The 4-lb rod AB is hanging in the vertical position. 

A 2-lb block, sliding on a smooth horizontal surface with a 

velocity of 12 ft>s, strikes the rod at its end B. Determine 

the velocity of the block immediately after the collision. The 

coefficient of restitution between the block and the rod at B 

is e = 0.8.

B

A

3 ft

12 ft/s

Prob. 19–48

19–49. The hammer consists of a 10-kg solid cylinder C 

and 6-kg uniform slender rod AB. If the hammer is released 

from rest when u = 90� and strikes the 30-kg block D when 

u = 0�, determine the velocity of block D and the angular 

velocity of the hammer immediately after the impact. The 

coefficient of restitution between the hammer and the 

block is e = 0.6.

A

B

C

D

500 mm

100 mm

50 mm
150 mm

u

Prob. 19–49

19–50. The 20-kg disk strikes the step without rebounding. 

Determine the largest angular velocity v1 the disk can have 

and not lose contact with the step, A.

200 mm

◊1

30 mmA

Prob. 19–50
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19–51. The solid ball of mass m is dropped with a velocity v1 

onto the edge of the rough step. If it rebounds horizontally 

off the step with a velocity v2, determine the angle u at 

which contact occurs. Assume no slipping when the ball 

strikes the step. The coefficient of restitution is e.

u

Prob. 19–51

*19–52. The wheel has a mass of 50 kg and a radius of 

gyration of 125 mm about its center of mass G. Determine 

the minimum value of the angular velocity V1 of the wheel, 

so that it strikes the step at A without rebounding and then 

rolls over it without slipping.

25 mm

150 mm

A

G

V1

Prob. 19–52

19–53. The wheel has a mass of 50 kg and a radius of 

gyration of 125 mm about its center of mass G. If it rolls 

without slipping with an angular velocity of V1 = 5 rad>s 

before it strikes the step at A, determine its angular velocity 

after it rolls over the step. The wheel does not lose contact 

with the step when it strikes it.

25 mm

150 mm

A

G

V1

Prob. 19–53

19–54. The rod of mass m and length L is released from 

rest without rotating. When it falls a distance L, the end A 

strikes the hook S, which provides a permanent connection. 

Determine the angular velocity v of the rod after it has 

rotated 90�. Treat the rod’s weight during impact as a 

nonimpulsive force.

A

L

L

S

Prob. 19–54
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19–55. The 15-lb rod AB is released from rest in the 

vertical position. If the coefficient or restitution between 

the floor and the cushion at B is e = 0.7, determine how 

high the end of the rod rebounds after impact with the floor.

2 ft

A

B

Prob. 19–55

*19–56. A ball having a mass of 8 kg and initial speed of 

v1 = 0.2 m>s rolls over a 30-mm-long depression. Assuming 

that the ball rolls off the edges of contact first A, then B, 

without slipping, determine its final velocity v2 when it 

reaches the other side.

A
B

30 mm

v2

v1 � 0.2 m/s

125 mm

Prob. 19–56

19–57. A solid ball with a mass m is thrown on the ground 

such that at the instant of contact it has an angular velocity 

V1 and velocity components (vG)x1 and (vG)y1 as shown. If 

the ground is rough so no slipping occurs, determine the 

components of the velocity of its mass center just after 

impact. The coefficient of restitution is e.

(vG)
y1

(vG)
x1

r

ω 1

G

Prob. 19–57

19–58. The pendulum consists of a 10-lb solid ball and 4-lb 

rod. If it is released from rest when u0 = 0�, determine the 

angle u1 of rebound after the ball strikes the wall and the 

pendulum swings up to the point of momentary rest.  

Take e = 0.6.

0.3 ft

0.3 ft

2 ft

A

u

Prob. 19–58
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C19–4. The amusement park ride consists of two gondolas 

A and B, and counterweights C and D that swing in opposite 

directions. Using realistic dimensions and mass, calculate 

the angular momentum of this system for any angular 

position of the gondolas. Explain through analysis why it is 

a good idea to design this system to have counterweights 

with each gondola.

C19–3. Why is it necessary to have the tail blade B on the 

helicopter that spins perpendicular to the spin of the main 

blade A? Explain your answer using numerical values and 

an impulse and momentum analysis.

A

M

B

Prob. C19–2 (© R.C. Hibbeler) 

C19–2. The swing bridge opens and closes by turning 90� 
using a motor located under the center of the deck at A that 

applies a torque M to the bridge. If the bridge was supported 

at its end B, would the same torque open the bridge at the 

same time, or would it open slower or faster? Explain your 

answer using numerical values and an impulse and 

momentum analysis. Also, what are the benefits of making 

the bridge have the variable depth as shown?

A

B

G

Prob. C19–1 (© R.C. Hibbeler) 

C19–1. The soil compactor moves forward at constant 

velocity by supplying power to the rear wheels. Use 

appropriate numerical data for the wheel, roller, and body 

and calculate the angular momentum of this system about 

point A at the ground, point B on the rear axle, and point G, 

the center of gravity for the system.

CONCEPTUAL PROBLEMS

A

B

Prob. C19–3 (© R.C. Hibbeler) 

A

C

B

D

Prob. C19–4 (© R.C. Hibbeler) 
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Linear and Angular Momentum

The linear and angular momentum of a 

rigid body can be referenced to its mass 

center G.

If the angular momentum is to be 

determined about an axis other than the 

one passing through the mass center, then 

the angular momentum is determined by 

summing vector HG and the moment of 

vector L about this axis.

d

G

L � mvG

vG � vA

Translation

CHAPTER REVIEW

G

L � mvG

HG � IGV

V

O

Rotation about a fixed axis

HG � IGV

L � mvG

G

A

d

General plane motion

 L = mvG  L = mvG  L = mvG

 HG = 0  HG = IGv  HG = IG v

 HA = (mvG)d HO = IO v HA = IGv + (mvG)d

Principle of Impulse and Momentum

The principles of linear and angular impulse 

and momentum are used to solve problems 

that involve force, velocity, and time. Before 

applying these equations, it is important to 

establish the x, y, z inertial coordinate 

system. The free-body diagram for the body 

should also be drawn in order to account 

for all of the forces and couple moments 

that produce impulses on the body.

 m(vGx)1 + � L
t2

t1

Fx dt = m(vGx)2

 m(vGy)1 + � L
t2

t1

Fy dt = m(vGy)2

 IGv1 + � L
t2

t1

MG dt = IGv2
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Conservation of Momentum

Provided the sum of the linear impulses 

acting on a system of connected rigid 

bodies is zero in a particular direction, 

then the linear momentum for the system 

is conserved in this direction. Conservation 

of angular momentum occurs if the 

impulses pass through an axis or are 

parallel to it. Momentum is also conserved 

if the external forces are small and thereby 

create nonimpulsive forces on the system. 

A free-body diagram should accompany 

any application in order to classify the 

forces as impulsive or nonimpulsive and to 

determine an axis about which the angular 

momentum may be conserved.

aa syst. linear

momentum
b

1

= aa syst. linear

momentum
b

2

aa syst. angular

momentum
b

O1

= aa syst. angular

momentum
b

O2

Eccentric Impact

If the line of impact does not coincide with 

the line connecting the mass centers of 

two colliding bodies, then eccentric impact 

will occur. If the motion of the bodies just 

after the impact is to be determined, then 

it is necessary to consider a conservation 

of momentum equation for the system and 

use the coefficient of restitution equation.

e =
(vB)2 - (vA)2

(vA)1 - (vB)1



558  CHAPTER 19  PLANAR KINET ICS OF A RIG ID BODY: IMPULSE AND MOMENTUM

19

R19–3. The tire has a mass of 9 kg and a radius of gyration 

kO = 225 mm. If it is released from rest and rolls down the 

plane without slipping, determine the speed of its center O 

when t = 3 s.

300 mm O

30�

Prob. R19–3

R19–4. The wheel having a mass of 100 kg and a radius of 

gyration about the z axis of kz = 300 mm, rests on the 

smooth horizontal plane. If the belt is subjected to a force of 

P = 200 N, determine the angular velocity of the wheel and 

the speed of its center of mass O, three seconds after the 

force is applied.

P � 200 N

yx

z

400 mm

O

Prob. R19–4

R19–1. The cable is subjected to a force of P = (10t2) lb. 

where t is in seconds. Determine the angular velocity of the 

spool 3 s after P is applied, starting from rest. The spool has 

a weight of 150 lb and a radius of gyration of 1.25 ft about its 

center, O.

1 ft

O

P = (10t2) lb

Prob. R19–1

R19–2. The space capsule has a mass of 1200 kg and a 

moment of inertia IG = 900 kg # m2 about an axis passing 

through G and directed perpendicular to the page. If it is 

traveling forward with a speed vG = 800 m>s and executes 

a turn by means of two jets, which provide a constant thrust 

of 400 N for 0.3 s, determine the capsule’s angular velocity 

just after the jets are turned off.

15°

15°

T = 400 N

T = 400 N

vG = 800 m/s
G

1.5 m

1.5 m

Prob. R19–2

REVIEW PROBLEMS
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R19–7. A thin disk of mass m has an angular velocity V1 

while rotating on a smooth surface. Determine its new 

angular velocity just after the hook at its edge strikes the 

peg P and the disk starts to rotate about P without 

rebounding.

P

r

ω1

Prob. R19–7

R19–8. The space satellite has a mass of 125 kg and a 

moment of inertia Iz = 0.940 kg # m2, excluding the four 

solar panels A, B, C, and D. Each solar panel has a mass of 

20 kg and can be approximated as a thin plate. If the 

satellite is originally spinning about the z axis at a constant 

rate vz = 0.5 rad>s when u = 90�, determine the rate of 

spin if all the panels are raised and reach the upward 

position, u = 0�, at the same instant.

Prob. R19–8

R19–5. The spool has a weight of 30 lb and a radius of 

gyration kO = 0.65 ft. If a force of 40 lb is applied to the 

cord at A, determine the angular velocity of the spool in 

t = 3 s starting from rest. Neglect the mass of the pulley 

and cord.

A

B

0.5 ft
1 ft

O
40 lb

Prob. R19–5

R19–6. Spool B is at rest and spool A is rotating at 6 rad>s 

when the slack in the cord connecting them is taken up. If 

the cord does not stretch, determine the angular velocity of 

each spool immediately after the cord is jerked tight.  

The spools A and B have weights and radii of  

gyration W A = 30 lb, kA = 0.8 ft, W B = 15 lb, kB = 0.6 ft, 

respectively.

A B

1.2 ft
0.4 ft

6 rad/s

Prob. R19–6



Design of industrial robots requires knowing the kinematics of their 
three-dimensional motions.

Chapter 20

(© Philippe Psaila/Science Source)



Three-Dimensional 
Kinematics of a  
Rigid Body

CHAPTER OBJECTIVES

■ To analyze the kinematics of a body subjected to rotation about 
a fixed point and to general plane motion.

■ To provide a relative-motion analysis of a rigid body using 
translating and rotating axes.

20.1 Rotation About a Fixed Point

When a rigid body rotates about a fixed point, the distance r from the 

point to a particle located on the body is the same for any position of the 

body. Thus, the path of motion for the particle lies on the surface of a 
sphere having a radius r and centered at the fixed point. Since motion 

along this path occurs only from a series of rotations made during a finite 

time interval, we will first develop a familiarity with some of the properties 

of rotational displacements.

The boom can rotate up and down, 
and because it is hinged at a point on 
the vertical axis about which it turns, 
it  is subjected to rotation about a 
fixed point. (© R.C. Hibbeler)
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Euler’s Theorem. Euler’s theorem states that two “component” 

rotations about different axes passing through a point are equivalent to a 

single resultant rotation about an axis passing through the point. If more 

than two rotations are applied, they can be combined into pairs, and each 

pair can be further reduced and combined into one rotation.

Finite Rotations. If component rotations used in Euler’s theorem 

are finite, it is important that the order in which they are applied be 

maintained. To show this, consider the two finite rotations U1 + U2 

applied to the block in Fig. 20–1a. Each rotation has a magnitude of 90° 

and a direction defined by the right-hand rule, as indicated by the arrow. 

The final position of the block is shown at the right. When these two 

rotations are applied in the order U2 + U1 , as shown in Fig. 20–1b, the 

final position of the block is not the same as it is in Fig. 20–1a. Because 

finite rotations do not obey the commutative law of addition 

(U1 + U2 � U2 + U1), they cannot be classified as vectors. If smaller, yet 

finite, rotations had been used to illustrate this point, e.g., 10° instead of 

90°, the final position of the block after each combination of rotations 

would also be different; however, in this case, the difference is only a 

small amount.

+

z

x

y

u2 � 90�

=

z

x

y

(a)

z

x

y

u1 � 90�

z

x

y
+

z

x

y

u1 � 90�

=

z

x

y

(b)

u2 � 90�

 Fig. 20–1 
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Infinitesimal Rotations. When defining the angular motions of a 

body subjected to three-dimensional motion, only rotations which are 

infinitesimally small will be considered. Such rotations can be classified as 
vectors, since they can be added vectorially in any manner. To show this, for 

purposes of simplicity let us consider the rigid body itself to be  

a sphere which is allowed to rotate about its central fixed point O, 

Fig. 20–2a. If we impose two infinitesimal rotations dU1 + dU2 on the body, 

it is seen that point P moves along the path dU1 * r + dU2 * r and ends 

up at P�. Had the two successive rotations occurred in the order dU2 + dU1 , 

then the resultant displacements of P would have been dU2 * r + dU1 * r. 

Since the vector cross product obeys the distributive law, by comparison 

(dU1 + dU2) * r = (dU2 + dU1) * r. Here infinitesimal rotations dU are 

vectors, since these quantities have both a magnitude and direction for 

which the order of (vector) addition is not important, i.e., 

dU1 + dU2 = dU2 + dU1 . As a result, as shown in Fig. 20–2a, the two 

“component” rotations dU1 and dU2 are equivalent to a single resultant 

rotation dU = dU1 + dU2 , a consequence of Euler’s theorem.

Angular Velocity. If the body is subjected to an angular rotation 

dU about a fixed point, the angular velocity of the body is defined by the 

time derivative,

 V = U
#

 (20–1)

The line specifying the direction of V, which is collinear with dU, is 

referred to as the instantaneous axis of rotation, Fig. 20–2b. In general, this 

axis changes direction during each instant of time. Since dU is a vector 

quantity, so too is V, and it follows from vector addition that if the body 

is subjected to two component angular motions, V1 = U
#
1 and V2 = U

#
2 , 

the resultant angular velocity is V = V1 + V2 .

Angular Acceleration. The body’s angular acceleration is 

determined from the time derivative of its angular velocity, i.e.,

 A = V
#

 (20–2)

For motion about a fixed point, A must account for a change in both the 

magnitude and direction of V, so that, in general, A is not directed along 

the instantaneous axis of rotation, Fig. 20–3.

As the direction of the instantaneous axis of rotation (or the line of 

action of V) changes in space, the locus of the axis generates a fixed space 
cone, Fig. 20–4. If the change in the direction of this axis is viewed with 

respect to the rotating body, the locus of the axis generates a body cone.

dU2

dU1dU

dU
dtV �

dU1 � r

dU2 � r P¿

dU � r
O

(a)

P

r

dU

(b)

Instantaneous axis
of rotation

O

V

V2

V1

Fig. 20–2 

P

r

O

Instantaneous axis
of rotationV

A

Fig. 20–3 
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At any given instant, these cones meet along the instantaneous axis of 

rotation, and when the body is in motion, the body cone appears to roll 

either on the inside or the outside surface of the fixed space cone. 

Provided the paths defined by the open ends of the cones are described 

by the head of the V vector, then A must act tangent to these paths at any 

given instant, since the time rate of change of V is equal to A. Fig. 20–4. 

To illustrate this concept, consider the disk in Fig. 20–5a that spins about 

the rod at Vs, while the rod and disk precess about the vertical axis at Vp. 

The resultant angular velocity of the disk is therefore V = Vs + Vp. Since 

both point O and the contact point P have zero velocity, then all points on 

a line between these points must have zero velocity. Thus, both V and the 

instantaneous axis of rotation are along OP. Therefore, as the disk rotates, 

this axis appears to move along the surface of the fixed space cone shown 

in Fig. 20–5b. If the axis is observed from the rotating disk, the axis then 

appears to move on the surface of the body cone. At any instant, though, 

these two cones meet each other along the axis OP. If V has a constant 

magnitude, then A indicates only the change in the direction of V, which is 

tangent to the cones at the tip of V as shown in Fig. 20–5b.

Velocity. Once V is specified, the velocity of any point on a body 

rotating about a fixed point can be determined using the same methods 

as for a body rotating about a fixed axis. Hence, by the cross product,

 v = V * r  (20–3)

Here r defines the position of the point measured from the fixed point O, 

Fig. 20–3.

Acceleration.  If V and A are known at a given instant, the acceleration 

of a point can be obtained from the time derivative of  Eq. 20–3, which yields

 a = A * r + V * (V * r)  (20–4)

*20.2  The Time Derivative of a Vector 
Measured from Either a Fixed 
or Translating-Rotating System

In many types of problems involving the motion of a body about a fixed 

point, the angular velocity V is specified in terms of its components. Then, 

if the angular acceleration A of such a body is to be determined, it is often 

easier to compute the time derivative of V using a coordinate system that 

has a rotation defined by one or more of the components of V. For 

example, in the case of the disk in Fig. 20–5a, where V = Vs + Vp, the x, 
y, z axes can be given an angular velocity of Vp . For this reason, and for 

other uses later, an equation will now be derived, which relates the time 

derivative of any vector A defined from a translating-rotating reference 

to its time derivative defined from a fixed reference.

Space cone

Body cone

Instantaneous
axis of rotation

V

A

Fig. 20–4 

(b)

Instantaneous
axis of rotation

Body cone

Vp

Vs

V
A

Space cone

Vp

Vs

x

O

z

y
P

Instantaneous
axis of
rotation

(a)

Fig. 20–5 
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Consider the x, y, z axes of the moving frame of reference to be rotating 

with an angular velocity �, which is measured from the fixed X, Y, Z 

axes, Fig. 20–6a. In the following discussion, it will be convenient to 

express vector A in terms of its i, j, k components, which define the 

directions of the moving axes. Hence,

A = Ax i + Ay j + Az k

In general, the time derivative of A must account for the change in 

both its magnitude and direction. However, if this derivative is taken 

with respect to the moving frame of reference, only the change in the 

magnitudes of the components of A must be accounted for, since the 

directions of the components do not change with respect to the moving 

reference. Hence,

 (A
#
)xyz = A

#
x i + A

#
y j + A

#
z k (20–5)

When the time derivative of A is taken with respect to the fixed frame 
of reference, the directions of i, j, and k change only on account of the 

rotation � of the axes and not their translation. Hence, in general,

A
#
= A

#
x i + A

#
y j + A

#
z k + Axi

#
+ Ay j

#
+ Azk

#

The time derivatives of the unit vectors will now be considered. For 

example, i
#
= d i>dt represents only the change in the direction of i with 

respect to time, since i always has a magnitude of 1 unit. As shown in 

Fig.  20–6b, the change, di, is tangent to the path described by the 

arrowhead of i as i swings due to the rotation �. Accounting for both the 

magnitude and direction of di, we can therefore define i
#
 using the cross 

product, i
#
= � * i. In general, then

i
#
= � * i  j

#
= � * j  k

#
= � * k

These formulations were also developed in Sec. 16.8, regarding planar 

motion of the axes. Substituting these results into the above equation 

and using Eq. 20–5 yields

 A
#
= (A

#
)xyz + � * A  (20–6)

This result is important, and will be used throughout Sec. 20.4 and 

Chapter 21. It states that the time derivative of any vector A as observed 

from the fixed X, Y, Z frame of reference is equal to the time rate of change 

of A as observed from the x, y, z translating-rotating frame of reference, 

Eq. 20–5, plus � * A, the change of A caused by the rotation of the x, y, z 

frame. As a result, Eq. 20–6 should always be used whenever � produces 

a change in the direction of A as seen from the X, Y, Z reference. If this 

change does not occur, i.e., � = 0, then A
#
= (A

#
)xyz , and so the time rate 

of change of A as observed from both coordinate systems will be the same.

Y

X

Z

x

y

z

k

i

j

A

(a)

�

xi at time t
di

i at time t � dt

(b)

�

Fig. 20–6 
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The disk shown in Fig. 20–7 spins about its axle with a constant angular 

velocity vs = 3 rad>s, while the horizontal platform on which the disk 

is mounted rotates about the vertical axis at a constant rate 

vp = 1 rad>s. Determine the angular acceleration of the disk and the 

velocity and acceleration of point A on the disk when it is in the 

position shown.

0.25 m

1 m
O

Y, y

Z, z

X, x

vs � 3 rad/s

vp � 1 rad/s

rA A

Fig. 20–7 

SOLUTION
Point O represents a fixed point of rotation for the disk if one considers 

a hypothetical extension of the disk to this point. To determine the 

velocity and acceleration of point A, it is first necessary to determine 

the angular velocity V and angular acceleration A of the disk, since 

these vectors are used in Eqs. 20–3 and 20–4.

Angular Velocity. The angular velocity, which is measured from X, 
Y, Z, is simply the vector addition of its two component motions. Thus,

V = Vs + Vp = 53j - 1k6  rad>s

EXAMPLE   20.1
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Angular Acceleration. Since the magnitude of V is constant, only a 

change in its direction, as seen from the fixed reference, creates the 

angular acceleration A of the disk. One way to obtain A is to compute 

the time derivative of each of the two components of V using Eq. 20–6. 

At the instant shown in Fig. 20–7, imagine the fixed X, Y, Z and a 

rotating x, y, z frame to be coincident. If the rotating x, y, z frame is 

chosen to have an angular velocity of � = Vp = 5-1k6  rad>s, then

Vs will always be directed along the y (not Y ) axis, and the time rate of 

change of Vs as seen from x, y, z is zero; i.e., (V
#

s)xyz = 0 (the magnitude 

and direction of Vs is constant). Thus,

V
#

s = (V
#

s)xyz + Vp * Vs = 0 + (-1k) * (3j) = 53i6  rad>s2

By the same choice of axes rotation, � = Vp , or even with � = 0, 

the time derivative (V
#

p)xyz = 0, since Vp has a constant magnitude and 

direction with respect to x, y, z. Hence,

V
#

p = (V
#

p)xyz + Vp * Vp = 0 + 0 = 0

The angular acceleration of the disk is therefore

A = V
# = V

#
s + V

#
p = 53i6  rad>s2 Ans.

Velocity and Acceleration. Since V and A have now been 

determined, the velocity and acceleration of point A can be found 

using Eqs. 20–3 and 20–4. Realizing that rA = 51j + 0.25k6  m,

Fig. 20–7, we have

 vA = V * rA = (3j - 1k) * (1j + 0.25k) = 51.75i6  m>s  Ans.

 aA = A * rA + V * (V * rA)

= (3i) * (1j + 0.25k) + (3j - 1k) * [(3j - 1k) * (1j + 0.25k)]

= 5-2.50j - 2.25k6  m>s2  Ans.
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At the instant u = 60�, the gyrotop in Fig. 20–8 has three components 

of angular motion directed as shown and having magnitudes defined as:

 Spin:  vs = 10 rad>s, increasing at the rate of 6 rad>s2

 Nutation:  vn = 3 rad>s, increasing at the rate of 2 rad>s2

 Precession:  vp = 5 rad>s, increasing at the rate of 4 rad>s2

Determine the angular velocity and angular acceleration of the top.

SOLUTION
Angular Velocity. The top rotates about the fixed point O. If the 

fixed and rotating frames are coincident at the instant shown, then the 

angular velocity can be expressed in terms of i, j, k components, with 

reference to the x, y, z frame; i.e.,

  V = -vn i + vs sin uj + (vp + vs cos u)k

  = -3i + 10 sin 60�j + (5 + 10 cos 60�)k

  = 5-3i + 8.66j + 10k6  rad>s  Ans.

Angular Acceleration. As in the solution of Example 20.1, the 

angular acceleration A will be determined by investigating separately 

the time rate of change of each of the angular velocity components as 

observed from the fixed X, Y, Z reference. We will choose an � for the 

x, y, z reference so that the component of V being considered is viewed 

as having a constant direction when observed from x, y, z.

Careful examination of the motion of the top reveals that Vs  has  

a constant direction relative to x, y, z if these axes rotate at 

� = Vn + Vp . Thus,

EXAMPLE   20.2

Y, y

Always in x–y plane
X, x

vp � 5 rad/s

vs � 10 rad/s

vn � 3 rad/s

vp � 4 rad/s2.

Always in
Z direction

Z, z

O

vn � 2 rad/s2.

vs � 6 rad/s2.

u

Fig. 20–8 

 V
#

s = (V
#

s)xyz + (Vn + Vp) * Vs

 = (6 sin 60�j + 6 cos 60�k) + (-3i + 5k) * (10 sin 60�j + 10 cos 60�k)

= 5-43.30i + 20.20j - 22.98k6  rad>s2

Since Vn always lies in the fixed X–Y plane, this vector has a constant 
direction if the motion is viewed from axes x, y, z having a rotation of 

� = Vp (not � = Vs + Vp). Thus,

V
#

n = (V
#

n)xyz + Vp * Vn = -2i +  (5k) * (-3i) = 5-2i - 15j6 rad>s2

Finally, the component Vp is always directed along the Z axis so that here 

it is not necessary to think of x, y, z as rotating, i.e., � = 0. Expressing 

the data in terms of the i, j, k components, we therefore have

 V
#

p = (V
#

p)xyz + 0 * Vp = 54k6  rad>s2

Thus, the angular acceleration of the top is

 A = V
#

s + V
#

n + V
#

p = 5-45.3i + 5.20j - 19.0k6  rad>s2 Ans.
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20.3 General Motion 

Shown in Fig. 20–9 is a rigid body subjected to general motion in three 

dimensions for which the angular velocity is V and the angular acceleration 

is A. If point A has a known motion of vA and aA , the motion of any other 

point B can be determined by using a relative-motion analysis. In this 

section a translating coordinate system will be used to define the relative 

motion, and in the next section a reference that is both rotating and 

translating will be considered.

If the origin of the translating coordinate system x, y, z (� = 0) is 

located at the “base point” A, then, at the instant shown, the motion of 

the body can be regarded as the sum of an instantaneous translation of 

the body having a motion of vA, and aA, and a rotation of the body about 

an instantaneous axis passing through point A. Since the body is rigid, 

the motion of point B measured by an observer located at A is therefore 

the same as the rotation of the body about a fixed point. This relative 

motion occurs about the instantaneous axis of rotation and is defined 

by  vB>A = V * rB>A , Eq. 20–3, and aB>A = A * rB>A + V * (V * rB>A), 

Eq. 20–4. For translating axes, the relative motions are related to absolute 

motions by vB = vA + vB>A and aB = aA + aB>A , Eqs. 16–15 and 16–17, so 

that the absolute velocity and acceleration of point B can be determined 

from the equations

 vB = vA + V * rB>A  (20–7)

and

 aB = aA + A * rB>A + V * (V * rB>A)  (20–8)

These two equations are essentially the same as those describing the 

general plane motion of a rigid body, Eqs. 16–16 and 16–18. However, 

difficulty in application arises for three-dimensional motion, because A 

now measures the change in both the magnitude and direction of V. 

Although this may be the case, a direct solution for vB and aB can be 

obtained  by noting that vB>A = vB - vA, and so Eq. 20–7 becomes  

vB>A  =  V * rB>A. The cross product indicates that vB>A is perpendicular 

to rB>A, and so, as noted by Eq. C–14 of Appendix C, we require

 rB>A # vB>A = 0  (20–9)

Taking the time derivative, we have

 vB>A # vB>A + rB>A # aB>A = 0  (20–10)

Solution II of the following example illustrates application of this idea.

Instantaneous
axis of rotation

Y

X

Z

y

z

x

rB/A
B

A
vA

aA

O

V

A

Fig. 20–9 
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EXAMPLE   20.3

vC � 3 m/s
2 m1 m

Z

1 m

0.5 m

D

Y
C

B

E

F

X

A

(a)

vC � 3 m/s
C

D

EX, x

A

Z, z

Y, y

vD

rD/C

(b)

V

Fig. 20–10 

*Although this is the case, the magnitude of vD can be obtained. For example, solve

Eqs. 1 and 2 for vy and vx in terms of vz and substitute this into Eq. 3. Then vz will 

cancel out, which will allow a solution for vD .

If the collar at C in Fig. 20–10a moves toward B with a speed of 3 m>s, 

determine the velocity of the collar at D and the angular velocity of 

the bar at the instant shown. The bar is connected to the collars at its 

end points by ball-and-socket joints.

SOLUTION I
Bar CD is subjected to general motion. Why? The velocity of point D 

on the bar can be related to the velocity of point C by the equation

vD = vC + V * rD>C
The fixed and translating frames of reference are assumed to coincide 

at the instant considered, Fig. 20–10b. We have

vD = -vD k  vC = 53j6  m>s
rD>C = 51i + 2j - 0.5k6  m  V = vx i + vy j + vz k

Substituting into the above equation we get

-vD k = 3j + 3 i j k
vx vy vz

1 2  -0.5

3
Expanding and equating the respective i, j, k components yields

 -0.5vy - 2vz = 0 (1)

 0.5vx + 1vz + 3 = 0 (2)

 2vx - 1vy + vD = 0 (3)

These equations contain four unknowns.* A fourth equation can be 

written if the direction of V is specified. In particular, any component 

of V acting along the bar’s axis has no effect on moving the collars. 

This is because the bar is free to rotate about its axis. Therefore, if V is 

specified as acting perpendicular to the axis of the bar, then V must 

have a unique magnitude to satisfy the above equations. Hence, 

V # rD>C = (vx i + vy j + vz k) # (1i + 2j - 0.5k) = 0

1vx + 2vy - 0.5vz = 0 (4)
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Solving Eqs. 1 through 4 simultaneously yields

vx = -4.86 rad>s vy = 2.29 rad>s vz = -0.571 rad>s, 

vD = 12.0 m>s, so that   v = 5.40 rad>s Ans.

SOLUTION II

Applying Eq. 20–9, vD>C = vD - vC = -vD 

k - 3j, so that

rD>C # vD>C = (1i + 2j - 0.5k) # (-vDk - 3j) = 0

 (1)(0) + (2)(-3) + (-0.5)(-vD) = 0

vD = 12 m>s Ans.

Since V is perpendicular to rD>C then  vD>C = V * rD>C or 

vD>C = v rD>C 

2(-12)2 + (-3)2 = v2(1)2 + (2)2 + (-0.5)2

v = 5.40 rad>s Ans.

PROBLEMS

20–1. The propeller of an airplane is rotating at a constant 

speed vx i, while the plane is undergoing a turn at a constant 

rate vt. Determine the angular acceleration of the propeller 

if (a) the turn is horizontal, i.e., vt k, and (b) the turn is 

vertical, downward, i.e., vt j.

z

x y

Vx

Prob. 20–1

20–2. The disk rotates about the z axis at a constant rate 

vz = 0.5 rad>s without slipping on the horizontal plane. 

Determine the velocity and the acceleration of point A on 

the disk.

z

y

A

x

Vz � 0.5 rad/s

150 mm

300 mm

Prob. 20–2
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20–3. The ladder of the fire truck rotates around the z axis 

with an angular velocity v1 = 0.15 rad>s, which is increasing at 

0.8 rad>s2. At the same instant it is rotating upward at a constant 

rate v2 = 0.6 rad>s. Determine the velocity and acceleration 

of point A located at the top of the ladder at this instant.

*20–4. The ladder of the fire truck rotates around the 

z axis with an angular velocity of v1 = 0.15 rad>s, which is 

increasing at 0.2 rad>s2. At the same instant it is rotating 

upward at v2 = 0.6 rad>s while increasing at 0.4 rad>s2. 

Determine the velocity and acceleration of point A located 

at the top of the ladder at this instant.

v1

z

y

x

A

40 ft

30�

v2

Probs. 20–3/4

20–5. If the plate gears A and B are rotating with the 

angular velocities shown, determine the angular velocity of 

gear C about the shaft DE. What is the angular velocity of 

DE about the y axis?

100 mm

100 mm

A

B
D

E
25 mm

y

x

vA� 5 rad/s

vB� 15 rad/s

C

Prob. 20–5

20–6. The conical spool rolls on the plane without slipping. 

If the axle has an angular velocity of v1 = 3 rad>s and an 

angular acceleration of a1 = 2 rad>s2 at the instant shown, 

determine the angular velocity and angular acceleration of 

the spool at this instant.

20�

B
A

v1 � 3 rad/s

a1 � 2 rad/s2

y

x

z

Prob. 20–6

20–7. At a given instant, the antenna has an angular 

motion v1 = 3 rad>s and  v 
#

1 = 2 rad>s2 about the z axis. At 

this same instant u = 30�, the angular motion about the  

x axis is v2 = 1.5 rad>s, and  v 
#

2 = 4 rad>s2. Determine the 

velocity and acceleration of the signal horn A at this instant. 

The distance from O to A is d = 3 ft.

z

u � �

v1

v2
v2

v1

Prob. 20–7
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*20–8. The disk rotates about the shaft S, while the shaft is 

turning about the z axis at a rate of vz = 4 rad>s, which is 

increasing at 2 rad>s2. Determine the velocity and acceleration 

of point A on the disk at the instant shown. No slipping occurs.

20–9. The disk rotates about the shaft S, while the shaft is 

turning about the z axis at a rate of vz = 4 rad>s, which is 

increasing at 2 rad>s2. Determine the velocity and acceleration 

of point B on the disk at the instant shown. No slipping occurs.

z

y

A

B

S

x

2 rad/s2

4 rad/s

0.1 m

0.1 m
0.5 m

Probs. 20–8/9

20–10. The electric fan is mounted on a swivel support 

such that the fan rotates about the z axis at a constant rate 

of vz  = 1 rad>s and the fan blade is spinning at a constant 

rate vs = 60 rad>s. If f = 45° for the motion, determine the 

angular velocity and the angular acceleration of the blade.

20–11. The electric fan is mounted on a swivel support 

such that the fan rotates about the z axis at a constant rate 

of vz  = 1 rad>s  and the fan blade is spinning at a constant 

rate vs = 60 rad>s. If at the instant f = 45°, f
#
 = 2 rad>s for 

the motion, determine the angular velocity and the angular 

acceleration of the blade.

x

z

Vz

Vs

f

Probs. 20–10/11

*20–12. The drill pipe P turns at a constant angular rate 

vP = 4 rad>s. Determine the angular velocity and angular 

acceleration of the conical rock bit, which rolls without 

slipping. Also, what are the velocity and acceleration of 

point A?

50 mm

P

A

vP � 4 rad/s

45�

Prob. 20–12

20–13. The right circular cone rotates about the z axis at a 

constant rate of v1 = 4 rad>s without slipping on the 

horizontal plane. Determine the magnitudes of the velocity 

and acceleration of points B and C.

C

B

50 mm

A
y

x

z

v1 � 4 rad/s

Prob. 20–13
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*20–16. Gear A is fixed while gear B is free to rotate on 

the shaft S. If the shaft is turning about the z axis at 

vz = 5 rad>s, while increasing at 2 rad>s2, determine the 

velocity and acceleration of point P at the instant shown. 

The face of gear B lies in a vertical plane.

y

x

z

vz

A B

S

P

80 mm
160 mm

80 mm

Prob. 20–16

20–17. The truncated double cone rotates about the z axis at 

vz  = 0.4 rad>s without slipping on the horizontal plane.  

If at this same instant vz  is increasing at v
#

z = 0.5 rad>s2, 

determine the velocity and acceleration of point A on the cone.

1.5 ft0.5 ft

30�

A

z

y
x

vz � 0.4 rad/s

1 ft
2 ft

Prob. 20–17

20–18. Gear A is fixed to the crankshaft S, while gear C is 

fixed. Gear B and the propeller are free to rotate. The 

crankshaft is turning at 80 rad>s about its axis. Determine 

the magnitudes of the angular velocity of the propeller and 

the angular acceleration of gear B.

0.1 ft

C A

B

S y

z

80 rad/s

0.4 ft

Prob. 20–18

20–14. The wheel is spinning about shaft AB with an 

angular velocity of vs = 10 rad>s, which is increasing at a 

constant rate of v
#

s = 6 rad>s2, while the frame precesses 

about the z axis with an angular velocity of vp = 12 rad>s, 

which is increasing at a constant rate of  v 
#

p = 3 rad>s2. 

Determine the velocity and acceleration of point C located 

on the rim of the wheel at this instant.

z

x

vp � 12 rad/s
vp � 3 rad/s2

vs � 10 rad/s
vs � 6 rad/s2

A

BC

0.15 m

y

Prob. 20–14

20–15. At the instant shown, the tower crane rotates about 

the z axis with an angular velocity v1 = 0.25 rad>s, which is 

increasing at 0.6 rad>s2. The boom OA rotates downward 

with an angular velocity v2 = 0.4 rad>s, which is increasing 

at 0.8 rad>s2. Determine the velocity and acceleration of 

point A located at the end of the boom at this instant.

v1 � 0.25 rad/s

40 ft

z

y

x

A

O

v2 � 0.4 rad/s

30�

Prob. 20–15
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20–19. Shaft BD is connected to a ball-and-socket joint at B, 

and a beveled gear A is attached to its other end. The gear is 

in mesh with a fixed gear C. If the shaft and gear A are 

spinning with a constant angular velocity v1 = 8 rad>s, 

determine the angular velocity and angular acceleration of 

gear A.

300 mm

100 mm
A

B

C

D

v1

y

x

75 mm

Prob. 20–19

*20–20. Gear B is driven by a motor mounted on turntable C. 

If gear A is held fixed, and the motor shaft rotates with a 

constant angular velocity of vy = 30 rad>s, determine the 

angular velocity and angular acceleration of gear B.

20–21. Gear B is driven by a motor mounted on turntable C. 

If gear A and the motor shaft rotate with constant angular 

speeds of vA = {10k} rad>s and vy = {30j} rad>s, respectively, 

determine the angular velocity and angular acceleration of 

gear B.

  vy � 30 rad/s

z

y

0.3 m

0.15 m

A

C

B

Probs. 20–20/21

20–22. The crane boom OA rotates about the z axis with a 

constant angular velocity of v1 = 0.15 rad>s, while it is 

rotating downward with a constant angular velocity of 

v2 = 0.2 rad>s. Determine the velocity and acceleration of 

point A located at the end of the boom at the instant shown.

110 ft

x

A
z

y

V1

V2

50 ft

O

Prob. 20–22

20–23. The differential of an automobile allows the two 

rear wheels to rotate at different speeds when the 

automobile travels along a curve. For operation, the rear 

axles are attached to the wheels at one end and have 

beveled gears A and B on their other ends. The differential 

case D is placed over the left axle but can rotate about C 

independent of the axle. The case supports a pinion gear E 

on a shaft, which meshes with gears A and B. Finally, a ring 

gear G is fixed to the differential case so that the case 

rotates with the ring gear when the latter is driven by the 

drive pinion H. This gear, like the differential case, is free to 

rotate about the left wheel axle. If the drive pinion is 

turning at vH = 100 rad>s and the pinion gear E is spinning 

about its shaft at vE = 30 rad>s, determine the angular 

velocity, vA and vB, of each axle.

50 mm

180 mm

To left
wheel

G E

z
H

A B

O
C

D

To right
wheel

From motor

40 mm

60 mm

vA y

vH

vE

vB

Prob. 20–23
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20–26. Rod AB is attached to collars at its ends by using ball-

and-socket joints. If collar A moves along the fixed rod at vA = 

5 m>s, determine the angular velocity of the rod and the velocity 

of collar B at the instant shown. Assume that the rod’s angular 

velocity is directed perpendicular to the axis of the rod.

20–27. Rod AB is attached to collars at its ends by using ball-

and-socket joints. If collar A moves along the fixed rod with a 

velocity of vA = 5 m>s and has an acceleration aA = 2 m>s2 at 

the instant shown, determine the angular acceleration of the 

rod and the acceleration of collar B at this instant. Assume 

that the rod’s angular velocity and angular acceleration are 

directed perpendicular to the axis of the rod.

x

vA � 5 m/s

z

y

2 m

1 m

45�

A

B

Probs. 20–26/27

*20–28. If the rod is attached with ball-and-socket joints to 

smooth collars A and B at its end points, determine the 

velocity of B at the instant shown if A is moving upward at 

a constant speed of vA = 5 ft>s. Also, determine the angular 

velocity of the rod if it is directed perpendicular to the axis 

of the rod.

20–29. If the collar at A in Prob. 20–28 is moving upward 

with an acceleration of aA = {-2k} ft>s2, at the instant its 

speed is vA = 5 ft>s, determine the acceleration of the collar 

at B at this instant.

y

z

x

vA � 5 ft/s

3 ft

6 ft 

2 ft
B

A

Probs. 20–28/29

*20–24. The end C of the plate rests on the horizontal plane, 

while end points A and B are restricted to move along the 

grooved slots. If at the instant shown A is moving downward 

with a constant velocity of vA = 4 ft>s, determine the angular 

velocity of the plate and the velocities of points B and C.

B

vA

C2 ft

2 ft

1 ft

0.8 ft

0.4 ft

z

y

x

A

Prob. 20–24

20–25. Disk A rotates at a constant angular velocity of 

10 rad>s. If rod BC is joined to the disk and a collar by ball-

and-socket joints, determine the velocity of collar B at the 

instant shown. Also, what is the rod’s angular velocity VBC if 

it is directed perpendicular to the axis of the rod?

100 mm
x

z

y

500 mm

300 mm

D B

C
A

v � 10 rad/s

E

200 mm

Prob. 20–25
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20–30. Rod AB is attached to collars at its ends by ball-and-

socket joints. If collar A has a speed vA = 4 m>s, determine the 

speed of collar B at the instant z = 2 m. Assume the angular 

velocity of the rod is directed perpendicular to the rod.

vA � 4 m/s

A

1.5 m

1 m
1.5 m

2 m

B

z

z

x

y

Prob. 20–30

20–31. The rod is attached to smooth collars A and B at its 

ends using ball-and-socket joints. Determine the speed of B 

at the instant shown if A is moving at vA = 8 m>s. Also, 

determine the angular velocity of the rod if it is directed 

perpendicular to the axis of the rod.

*20–32. If the collar A in Prob. 20–31 has a deceleration of  

aA = {-5k} m>s2, at the instant shown, determine the 

acceleration of collar B at this instant.

y

x

vA � 8 m/s

1 m

1.5 m

A

B

z

2 m

Probs. 20–31/32

20–33. Rod CD is attached to the rotating arms using ball-

and-socket joints. If AC has the motion shown, determine the 

angular velocity of link BD at the instant shown.

20–34. Rod CD is attached to the rotating arms using ball-

and-socket joints. If AC has the motion shown, determine 

the angular acceleration of link BD at this instant.

z

x

y

0.4 m

0.8 m

1 m

0.6 m

A

B

C

D

vAC � 2 rad/s2
vAC � 3 rad/s
�

Probs. 20–33/34

20–35. Solve Prob. 20–28 if the connection at B consists of a 

pin as shown in the figure below, rather than a ball-and-socket 

joint. Hint: The constraint allows rotation of the rod both 

along the bar (j direction) and along the axis of the pin 

(n direction). Since there is no rotational component in the 

u direction, i.e., perpendicular to n and j where u = j :  n, 

an additional equation for solution can be obtained from 

V # u = 0. The vector n is in the same direction as rD>B  :  rC>B.

B

D

C

u

j

n

Prob. 20–35

*20–36. Member ABC is pin connected at A and has a 

ball-and-socket joint at B. If the collar at B is moving along 

the inclined rod at vB = 8 m>s, determine the velocity of 

point C at the instant shown. Hint: See Prob. 20–35.

z

x

y

vB � 8 m/s

30�

C
A

B

1 m
2 m

1.5 m

Prob. 20–36
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*20.4  Relative-Motion Analysis Using 
Translating and Rotating Axes

The most general way to analyze the three-dimensional motion of a rigid 

body requires the use of x, y, z axes that both translate and rotate relative 

to a second frame X, Y, Z. This analysis also provides a means to determine 

the motions of two points A and B located on separate members of a 

mechanism, and the relative motion of one particle with respect to another 

when one or both particles are moving along curved paths.

As shown in Fig. 20–11, the locations of points A and B are specified 

relative to the X, Y, Z frame of reference by position vectors rA and rB . 

The base point A represents the origin of the x, y, z coordinate system, 

which is translating and rotating with respect to X, Y, Z. At the instant 

considered, the velocity and acceleration of point A are vA and aA , and 

the angular velocity and angular acceleration of the x, y, z axes are � and 

�
#
= d� >dt. All these vectors are measured with respect to the X, Y, Z 

frame of reference, although they can be expressed in Cartesian 

component form along either set of axes.

X

Y

Z
y

x

z
B

JI

K

i

j

k

rA

rB

rB/A

zB

yB

xBA

�

Fig. 20–11 
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Position. If the position of “B with respect to A” is specified by the 

relative-position vector rB>A , Fig. 20–11, then, by vector addition,

 rB = rA + rB>A  (20–11)

where

 rB = position of B

 rA = position of the origin A

 rB>A = position of “B with respect to A”

Velocity.  The velocity of point B measured from X, Y, Z can be 

determined by taking the time derivative of Eq. 20–11,

 r
#
B = r

#
A + r

#
B>A 

The first two terms represent vB and vA . The last term must be evaluated 

by applying Eq. 20–6, since rB>A is measured with respect to a rotating 

reference. Hence,

 r
#
B>A = (r

#
B>A)xyz + � * rB>A = (vB>A)xyz + � * rB>A (20–12)

Therefore,

 vB = vA + � * rB>A + (vB>A)xyz  (20–13)

where

 vB = velocity of B

 vA = velocity of the origin A of the x, y, z frame of reference

 (vB>A)xyz =  velocity of “B with respect to A” as measured by an 

observer attached to the rotating x, y, z frame of reference

 � = angular velocity of the x, y, z frame of reference

 rB>A = position of “B with respect to A”
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Acceleration.  The acceleration of point B measured from X, Y, Z is 

determined by taking the time derivative of Eq. 20–13.

v
#
B = v

#
A + �

#
* rB>A + � * r

#
B>A +

d

dt
 (vB>A)xyz

The time derivatives defined in the first and second terms represent aB 

and aA, respectively. The fourth term can be evaluated using Eq. 20–12, 

and the last term is evaluated by applying Eq. 20–6, which yields

 
d

dt
 (vB>A)xyz = (v

#
B>A)xyz + � * (vB>A)xyz = (aB>A)xyz + � * (vB>A)xyz

Here (aB>A)xyz is the acceleration of B with respect to A measured from x, 
y, z. Substituting this result and Eq. 20–12 into the above equation and 

simplifying, we have

aB = aA + �
#

* rB>A + � * (� * rB>A) + 2� * (vB>A)xyz + (aB>A)xyz

 (20–14)

where

  aB = acceleration of B

  aA =  acceleration of the origin A of the x, y, z frame of 

reference

 (aB>A)xyz ,  (vB>A)xyz =  relative acceleration and relative velocity of “B 
with respect to A” as measured by an observer 

attached to the rotating x, y, z frame of reference

  �
#

, � =  angular acceleration and angular velocity of the 

x, y, z frame of reference

  rB>A = position of “B with respect to A”

Equations 20–13 and 20–14 are identical to those used in Sec. 16.8 for 

analyzing relative plane motion.* In that case, however, application is 

simplified since � and �
#

 have a constant direction which is always 

perpendicular to the plane of motion. For three-dimensional motion, �
#

 

must be computed by using Eq. 20–6, since �
#

 depends on the change in 

both the magnitude and direction of �.

Z

A

B

z

y
x

Complicated spatial motion of the concrete 
bucket B occurs due to the rotation of the 
boom about the Z axis, motion of the 
carriage A along the boom, and extension 
and swinging of the cable AB. A 
translating-rotating x, y, z coordi nate 
system can be established on the carriage, 
and a relative-motion analysis can then be 
applied to study this  motion.  
(© R.C. Hibbeler) *Refer to Sec. 16.8 for an interpretation of the terms.
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Procedure for Analysis

Three-dimensional motion of particles or rigid bodies can be analyzed 

with Eqs. 20–13 and 20–14 by using the following procedure. 

Coordinate Axes.
  Select the location and orientation of the X, Y, Z and x, y, z coordinate 

axes. Most often solutions can be easily obtained if at the instant 

considered:

  (1) the origins are coincident

  (2) the axes are collinear

  (3) the axes are parallel

  If several components of angular velocity are involved in a problem, 

the calculations will be reduced if the x, y, z axes are selected such 

that only one component of angular velocity is observed with respect 

to this frame 1�xyz2 and the frame rotates with � defined by the 

other components of angular velocity.

Kinematic Equations.
  After the origin of the moving reference, A, is defined and the 

moving point B is specified, Eqs. 20–13 and 20–14 should then be 

written in symbolic form as

  vB = vA + � * rB>A + (vB>A)xyz

  aB = aA + �
#

* rB>A + � * (� * rB>A) + 2� * (vB>A)xyz + (aB>A)xyz

  If rA and � appear to change direction when observed from the 

fixed X, Y, Z reference then use a set of primed reference axes, x�, y�, 
z� having a rotation � � = �. Equation 20–6 is then used to 

determine �
#

 and the motion vA and aA of the origin of the moving x, 
y, z axes.

  If rB>A and �xyz appear to change direction as observed from x, y, z, 

then use a set of double-primed reference axes x�, y�, z� having 

� � = �xyz and apply Eq. 20–6 to determine �
#

xyz and the relative 

motion (vB>A)xyz and (aB>A)xyz.

  After the final forms of �
#

, vA, aA, �
#

xyz, (vB>A)xyz, and (aB>A)xyz are 

obtained, numerical problem data can be substituted and the 

kinematic terms evaluated. The components of all these vectors can 

be selected either along the X, Y, Z or along the x, y, z axes. The choice 

is arbitrary, provided a consistent set of unit vectors is used. 
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A motor and attached rod AB have the angular motions shown in 

Fig.  20–12. A collar C on the rod is located 0.25 m from A and is 

moving downward along the rod with a velocity of 3 m>s and an 

acceleration of 2 m>s2. Determine the velocity and acceleration of C 

at this instant.

SOLUTION
Coordinate Axes.
The origin of the fixed X, Y, Z reference is chosen at the center of 

the platform, and the origin of the moving x, y, z frame at point A, 

Fig. 20–12. Since the collar is subjected to two components of angular 

motion, Vp and VM , it will be viewed as having an angular velocity of 

�xyz = VM in x, y, z. Therefore, the x, y, z axes will be attached to the 

platform so that � = Vp .

EXAMPLE   20.4

0.25 m

X, x, x¿, x¿¿

·vM � 1 rad/s2
vM � 3 rad/s

2 m/s2
3 m/s

Y, y¿

y, y¿¿

vp � 5 rad/s

vp � 2 rad/s2·

Z, z¿

z, z¿¿

1 m
2 m O

C

B

A

Fig. 20–12 
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Kinematic Equations. Equations 20–13 and 20–14, applied to 

points C and A, become

 vC = vA + � * rC>A + (vC>A)xyz

 aC = aA + �
#

* rC>A + � * (� * rC>A) + 2� * (vC>A)xyz + (aC>A)xyz

Motion of A. Here rA changes direction relative to X, Y, Z. To find 

the time derivatives of rA we will use a set of x�, y�, z� axes coincident 

with the X, Y, Z axes that rotate at � � = Vp . Thus,

 � = Vp = 55k6  rad>s (� does not change direction relative to X, Y, Z.)

 �
#
= V

#
p = 52k6  rad>s2

 rA = 52i6  m

 vA = r
#
A = (r

#
A)x�y�z� + Vp * rA = 0 + 5k * 2i = 510j6  m>s

 aA = r
$

A = [(r
$

A)x�y�z� + Vp * (r
#
A)x�y�z�] + V

#
p * rA + Vp * r

#
A

= [0 + 0] + 2k * 2i + 5k * 10j = 5-50i + 4j6  m>s2

Motion of C with Respect to A. Here rC>A changes direction 

relative to x, y, z, and so to find its time derivatives use a set of x�, y�, 
z� axes that rotate at � � = �xyz = VM . Thus,

 �xyz = VM = 53i6  rad>s (�xyz does not change direction relative to x, y, z.)

 �
#

xyz = V
#

M = 51i6  rad>s2

 rC>A = 5-0.25k6  m

 (vC>A)xyz = (r
#
C>A)xyz = (r

#
C>A)x�y�z� + VM * rC>A

= -3k + [3i * (-0.25k)] = 50.75j - 3k6  m>s
 (aC>A)xyz = (r

$
C>A)xyz = [(r

$
C>A)x�y�z� + VM * (r

#
C>A)x�y�z�] + V

#
M * rC>A + VM * (r

#
C>A)xyz

= [-2k + 3i * (-3k)] + (1i) * (-0.25k) + (3i) * (0.75j - 3k)

= 518.25j + 0.25k6  m>s2

Motion of C.
 vC = vA + � * rC>A + (vC>A)xyz

= 10j + [5k * (-0.25k)] + (0.75j - 3k)

= 510.75j - 3k6  m>s Ans.

 aC = aA + �
#

* rC>A + � * (� * rC>A) + 2� * (vC>A)xyz + (aC>A)xyz

= (-50i + 4j) + [2k * (-0.25k)] + 5k * [5k * (-0.25k)]

+ 2[5k * (0.75j - 3k)] + (18.25j + 0.25k)

= 5-57.5i + 22.25j + 0.25k6  m>s2  Ans.
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EXAMPLE   20.5

The pendulum shown in Fig. 20–13 consists of two rods; AB is pin 

supported at A and swings only in the Y–Z plane, whereas a bearing at B 

allows the attached rod BD to spin about rod AB. At a given instant, the 

rods have the angular motions shown. Also, a collar C, located 0.2 m from B, 

has a velocity of 3 m>s and an acceleration of 2 m>s2 along the rod. 

Determine the velocity and acceleration of the collar at this instant.

SOLUTION I
Coordinate Axes. The origin of the fixed X, Y, Z frame will be placed 

at A. Motion of the collar is conveniently observed from B, so the origin 

of the x, y, z frame is located at this point. We will choose � = V1 and 

�xyz = V2 .

Kinematic Equations.
 vC = vB + � * rC>B + (vC>B)xyz

 aC = aB + �
#

* rC>B + � * (� * rC>B) + 2� * (vC>B)xyz + (aC>B)xyz

0.5 m

Y, y¿

3 m/s
2 m/s2

D
y, y¿¿C0.2 m

v2 � 6 rad/s2.

x, x¿¿

v2 � 5 rad/s

B

Z, z, z¿, z¿¿

v1 � 4 rad/s

A

X, x¿

v1 � 1.5 rad/s2.

Fig. 20–13 

Motion of B. To find the time derivatives of rB let the x�, y�, z� axes rotate with � � = V1 . Then

 � � = V1 = 54i6  rad>s �
#

� = V
#

1 = 51.5i6  rad>s2

 rB = 5-0.5k6  m

 vB = r
#
B = (r

#
B)x�y�z� + V1 * rB = 0 + 4i * (-0.5k) = 52j6  m>s

 aB = r
$

B = [(r
$

B)x�y�z� + V1 * (r
#
B)x�y�z�] + V

#
1 * rB + V1 * r

#
B

 = [0 + 0] + 1.5i * (-0.5k) + 4i * 2j = 50.75j + 8k6  m>s2

Motion of C with Respect to B. To find the time derivatives of rC>B relative to x, y, z, let the x�, y�, z� axes 

rotate with �xyz = V2 . Then

�xyz = V2 = 55k6  rad>s �
#

xyz = V
#

2 = 5-6k6  rad>s2

rC>B = 50.2j6  m

 (vC>B)xyz = (r
#
C>B)xyz = (r

#
C>B)x�y�z� + V2 * rC>B = 3j + 5k * 0.2j = 5-1i + 3j6  m>s

 (aC>B)xyz = (r
$

C>B)xyz = [(r
$

C>B)x�y�z� + V2 * (r
#
C>B)x�y�z�] + V

#
2 * rC>B + V2 * (r

#
C>B)xyz

 = (2j + 5k * 3j) + (-6k * 0.2j) + [5k * (-1i + 3j)]

 = 5-28.8i - 3j6  m>s2

Motion of C.
 vC = vB + � * rC>B + (vC>B)xyz = 2j + 4i * 0.2j + (-1i + 3j)

 = 5-1i + 5j + 0.8k6  m>s   Ans.

 aC = aB + �
#

* rC>B + � * (� * rC>B) + 2� * (vC>B)xyz + (aC>B)xyz

 = (0.75j + 8k) + (1.5i * 0.2j) + [4i * (4i * 0.2j)]

 + 2[4i * (-1i + 3j)] + (-28.8i - 3j)

 = 5-28.8i - 5.45j + 32.3k6  m>s2  Ans.
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SOLUTION II
Coordinate Axes. Here we will let the x, y, z axes rotate at

� = V1 + V2 = 54i + 5k6  rad>s
Then �xyz = 0.

Motion of B. From the constraints of the problem V1 does not 

change direction relative to X, Y, Z; however, the direction of V2 is 

changed by V1 . Thus, to obtain �
#

 consider x�, y�, z� axes coincident 

with the X, Y, Z axes at A, so that � � = V1 . Then taking the derivative 

of the components of �, 

�
#
= V

#
1 + V

#
2 = [(V

#
1)x�y�z� + V1 * V1] + [(V

#
2)x�y�z� + V1 * V2]

= [1.5i + 0] + [-6k + 4i * 5k] = 51.5i - 20j - 6k6  rad>s2

Also, V1 changes the direction of rB so that the time derivatives of rB 

can be found using the primed axes defined above. Hence,

vB = r
#
B = (r

#
B)x�y�z� + V1 * rB

= 0 + 4i * (-0.5k) = 52j6  m>s
aB = r

$
B = [(r

$
B)x�y�z� + V1 * (r

#
B)x�y�z�] + V

#
1 * rB + V1 * r

#
B

= [0 + 0] + 1.5i * (-0.5k) + 4i * 2j = 50.75j + 8k6  m>s2

Motion of C with Respect to B.

 �xyz = 0

 �
#

xyz = 0

 rC>B = 50.2j6  m

 (vC>B)xyz = 53j6  m>s
 (aC>B)xyz = 52j6  m>s2

Motion of C.
 vC = vB + � * rC>B + (vC>B)xyz

= 2j + [(4i + 5k) * (0.2j)] + 3j

= 5-1i + 5j + 0.8k6  m>s Ans.

 aC = aB + �
#

* rC>B + � * (� * rC>B) + 2� * (vC>B)xyz + (aC>B)xyz

= (0.75j + 8k) + [(1.5i - 20j - 6k) * (0.2j)]

+ (4i + 5k) * [(4i + 5k) * 0.2j] + 2[(4i + 5k) * 3j] + 2j

= 5-28.8i - 5.45j + 32.3k6  m>s2  Ans.
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PROBLEMS

20–37. Solve Example 20.5 such that the x, y, z axes move 

with curvilinear translation, � = 0 in which case  

the collar appears to have both an angular velocity 

�xyz = V1 + V2 and radial motion.

20–38. Solve Example 20.5 by fixing x, y, z axes to rod BD 

so that � = V1 + V2. In this case the collar appears only to 

move radially outward along BD; hence �xyz = 0.

20–39. At the instant u = 60�, the telescopic boom AB of 

the construction lift is rotating with a constant angular 

velocity about the z axis of v1 = 0.5 rad>s and about the pin 

at A with a constant angular speed of v2 = 0.25 rad>s. 

Simultaneously, the boom is extending with a velocity of  

1.5 ft>s, and it has an acceleration of 0.5 ft>s2, both measured 

relative to the construction lift. Determine the velocity and 

acceleration of point B located at the end of the boom at 

this instant.

*20–40. At the instant u = 60�, the construction lift is

rotating about the z axis with an angular velocity of 

v1 = 0.5 rad>s and an angular acceleration of 

v1
# = 0.25 rad>s2 while the telescopic boom AB rotates

about the pin at A with an angular velocity of v2 = 0.25 rad>s 

and angular acceleration of v
#

2 = 0.1 rad>s2. Simultaneously, 

the boom is extending with a velocity of 1.5 ft>s, and it has 

an acceleration of 0.5 ft>s2, both measured relative to the 

frame. Determine the velocity and acceleration of point B 

located at the end of the boom at this instant.

z

y

x

15 ft

2 ft
C

OA

B

u

v1, v1

v2, v2

Probs. 20–39/40

20–41. At the instant shown, the arm AB is rotating about the 

fixed pin A with an angular velocity v1 = 4 rad>s and angular 

acceleration v
#

1 = 3 rad>s2. At this same instant, rod BD is 

rotating relative to rod AB with an angular velocity v2 = 5 rad>s, 
which is increasing at v

#
2 = 7 rad>s2. Also, the collar C is moving 

along rod BD with a velocity of 3 m>s and an acceleration of  

2 m>s2, both measured relative to the rod. Determine the 

velocity and acceleration of the collar at this instant.

z

x
y

1.5 m

0.6 mD

A

B

C

v1 � 4 rad/s
�v1 � 3 rad/s2

v2 � 5 rad/s
�v2 � 7 rad/s2

3 m/s
2 m/s2

AAAAAAAAAA

Prob. 20–41

20–42. At the instant u = 30�, the frame of the crane and 

the boom AB rotate with a constant angular velocity of 

v1 = 1.5 rad>s and v2 = 0.5 rad>s, respectively. Determine 

the velocity and acceleration of point B at this instant.

20–43. At the instant u = 30�, the frame of the crane is 

rotating with an angular velocity of v1 = 1.5 rad>s and 

angular acceleration of v
#

1 = 0.5 rad>s2, while the boom AB 
rotates with an angular velocity of v2 = 0.5 rad>s and 

angular acceleration of v
#

2 = 0.25 rad>s2. Determine the 

velocity and acceleration of point B at this instant.

12 m
1.5 m

z

y
A

B

O u

V2, V2

V1, V1

Probs. 20–42/43
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*20–44. At the instant shown, the rod AB is rotating about 

the z axis with an angular velocity v1 = 4 rad>s and an 

angular acceleration v
#
1 = 3 rad>s2. At this same instant, the 

circular rod has an angular motion relative to the rod as 

shown. If the collar C is moving down around the circular 

rod with a speed of 3 in.>s, which is increasing at 8 in.>s2, 

both measured relative to the rod, determine the collar’s 

velocity and acceleration at this instant.

z

x

y

5 in.

4 in.

A

B

C

v1 � 4 rad/s
�v1 � 3 rad/s2

v2 � 2 rad/s
�v2 � 8 rad/s2

Prob. 20–44

20–45. The particle P slides around the circular hoop with 

a constant angular velocity of u
#
 = 6 rad>s, while the hoop 

rotates about the x axis at a constant rate of v = 4 rad>s. If 

at the instant shown the hoop is in the x–y plane and the 

angle u = 45°, determine the velocity and acceleration of the 

particle at this instant.

200 mm

z

P

y

x

O

V � 4 rad/s

u

Prob. 20–45

20–46. At the instant shown, the industrial manipulator is 

rotating about the z axis at v1 = 5 rad>s, and about joint B at 

v2 = 2 rad>s. Determine the velocity and acceleration of the 

grip A at this instant, when f = 30°, u = 45°, and r = 1.6 m.

20–47. At the instant shown, the industrial manipulator is 

rotating about the z axis at v1 = 5 rad>s, and v
#

1 = 2 rad>s2; 

and about joint B at v2 = 2 rad>s and v
#

2 = 3 rad>s2. 

Determine the velocity and acceleration of the grip A at 

this instant, when f = 30°, u = 45°, and r = 1.6 m.

v2

v1

u

f

1.2 m

z

Ar
x

y

B

Probs. 20–46/47

*20–48. At the given instant, the rod is turning about the z 

axis with a constant angular velocity v1 = 3 rad>s. At this 

same instant, the disk is spinning at v2 = 6 rad>s when  

v
#
2 = 4 rad>s2, both measured relative to the rod. Determine 

the velocity and acceleration of point P on the disk at  

this instant.

y

z

 v2 � 6 rad/s

 v2 � 4 rad/s2
O

1.5 m
0.5 m

0.5 m

x
2 m

 v1 � 3 rad/s

P

�

Prob. 20–48



588  CHAPTER 20  THREE-DIMENSIONAL KINEMATICS OF A RIG ID BODY

20

20–49. At the instant shown, the backhoe is traveling 

forward at a constant speed vO = 2 ft>s, and the boom ABC 

is rotating about the z axis with an angular velocity  

v1 = 0.8 rad>s and an angular acceleration v
#

1 = 1.30 rad>s2. 

At this same instant the boom is rotating with v2 = 3 rad>s 

when v
#

2 = 2 rad>s2, both measured relative to the frame. 

Determine the velocity and acceleration of point P on the 

bucket at this instant.

y

5 ft

x

P

B

C

A
u

15 ft

3 ft

2 ft

4 ft

v1 � 0.8 rad/s
v1 � 1.30 rad/s2v2 � 3 rad/s

v2 � 2 rad/s2

z

vO � 2 ft/s

O

Prob. 20–49

20–50. At the instant shown, the arm OA of the conveyor 

belt is rotating about the z axis with a constant angular 

velocity v1 = 6 rad>s, while at the same instant the arm is 

rotating upward at a constant rate v2 = 4 rad>s. If the 

conveyor is running at a constant rate  r 
#
 = 5 ft>s, determine 

the velocity and acceleration of the package P at the instant 

shown. Neglect the size of the package.

20–51. At the instant shown, the arm OA of the conveyor 

belt is rotating about the z axis with a constant angular velocity 

v1 = 6 rad>s, while at the same instant the arm is rotating 

upward at a constant rate v2 = 4 rad>s. If the conveyor is 

running at a rate  r 
#
 = 5 ft>s, which is increasing at r  

$ = 8 ft>s2,

determine the velocity and acceleration of the package P at 

the instant shown. Neglect the size of the package.

V1 � 6 rad/s

V2 � 4 rad/s
y

z

x

A

O

r � 6 ft

u � 45�

P

Probs. 20–50/51

*20–52. The crane is rotating about the z axis with a

constant rate v1 = 0.25 rad>s, while the boom OA is rotating 

downward with a constant rate v2 = 0.4 rad>s. Compute the 

velocity and acceleration of point A located at the top of the 

boom at the instant shown.

20–53. Solve Prob. 20–52 if the angular motions are 

increasing at v
#

1 = 0.4 rad>s2 and v
#

2 = 0.8 rad>s2 at the 

instant shown.

30�

y

A

x

O

z

v1 � 0.25 rad/s

v2 � 0.4 rad/s

40 ft

Probs. 20–52/53

20–54. At the instant shown, the arm AB is rotating about 

the fixed bearing with an angular velocity v1 = 2 rad>s and 

angular acceleration v
#

1 = 6 rad>s2. At the same instant, rod 

BD is rotating relative to rod AB at v2 = 7 rad>s, which is 

increasing at v
#

2 = 1 rad>s2. Also, the collar C is moving 

along rod BD with a velocity r
# = 2 ft>s and a deceleration 

r
$ = -0.5 ft>s2, both measured relative to the rod.

Determine the velocity and acceleration of the collar at  

this instant.

u � 30�

A

C
B

v2 � 7 rad/s
v2 � 1 rad/s2

v1 � 2 rad/s
v1 � 6 rad/s2

r � 1 ft

D

y

x 2 ft

1.5 ft

z

Prob. 20–54
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Rotation About a Fixed Point

When a body rotates about a fixed point O, 
then points on the body follow a path 

that lies on the surface of a sphere 

centered at  O. 

Since the angular acceleration is a time 

rate of change in the angular velocity, 

then it is necessary to account for both 

the magnitude and directional changes 

of V when finding its time derivative. To 

do this, the angular velocity is often 

specified in terms of its component 

motions, such that the direction of some 

of these components will remain 

constant relative to rotating x, y, z axes. 

If this is the case, then the time derivative 

relative to the fixed axis can be 

determined using A
#
= (A

#
)xyz + � * A.

Once V and A are known, the velocity 

and acceleration of any point P in the 

body can then be determined.

General Motion

If the body undergoes general motion, 

then the motion of a point B on the body 

can be related to the motion of another 

point A using a relative motion analysis, 

with translating axes attached to A.

Relative Motion Analysis Using 
Translating and Rotating Axes

The motion of two points A and B on a 

body, a series of connected bodies, or 

each point located on two different paths, 

can be related using a relative motion 

analysis with rotating and translating 

axes at A.

When applying the equations, to find vB 

and aB, it is important to account for both 

the magnitude and directional changes of 

rA , rB>A, �, and �xyz when taking their 

time derivatives to find vA , aA , (vB>A)xyz , 

(aB>A)xyz , �
#
, and �

#
xyz . To do this properly, 

one must use Eq. 20–6.

vP = V * r

aP = A * r + V * (V * r)

vB = vA + V * rB>A
aB = aA + A * rB>A + V * (V * rB>A)

vB = vA + � * rB>A + (vB>A)xyz

aB = aA + �
#

* rB>A + � * (� * rB>A) + 2� * (vB>A)xyz + (aB>A)xyz

P

r

O

Instantaneous axis
of rotationV

A



The forces acting on each of these motorcycles can be determined using the 
equations of motion as discussed in this chapter.

Chapter 21

(© Derek Watt/Alamy)



Three-Dimensional Kinetics 
of a Rigid Body

CHAPTER OBJECTIVES

■ To introduce the methods for finding the moments of inertia and 
products of inertia of a body about various axes.

■ To show how to apply the principles of work and energy and 
linear and angular impulse and momentum to a rigid body having 
three-dimensional motion.

■ To develop and apply the equations of motion in three 
dimensions.

■ To study gyroscopic and torque-free motion.

*21.1 Moments and Products of Inertia

When studying the planar kinetics of a body, it was necessary to introduce 

the moment of inertia IG , which was computed about an axis perpendicular 

to the plane of motion and passing through the body’s mass center G. For 

the kinetic analysis of three-dimensional motion it will sometimes be 

necessary to calculate six inertial quantities. These terms, called the 

moments and products of inertia, describe in a particular way the 

distribution of mass for a body relative to a given coordinate system that 

has a specified orientation and point of origin.
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Moment of Inertia. Consider the rigid body shown in Fig. 21–1. 

The moment of inertia for a differential element dm of the body about 

any one of the three coordinate axes is defined as the product of the 

mass of the element and the square of the shortest distance from the axis 

to the element. For example, as noted in the figure, rx = 2y2 + z2, so 

that the mass moment of inertia of the element about the x axis is

dIxx = rx
2 dm = (y2 + z2) dm

The moment of inertia Ixx for the body can be determined by integrating 

this expression over the entire mass of the body. Hence, for each of the 

axes, we can write

 

 Ixx = Lm
rx

2dm = Lm
(y2 + z2) dm

 Iyy = Lm
r2

ydm = Lm
(x2 + z2) dm

 Izz = Lm
r2

zdm = Lm
(x2 + y2) dm

 (21–1)

Here it is seen that the moment of inertia is always a positive quantity, 

since it is the summation of the product of the mass dm, which is always 

positive, and the distances squared.

Product of Inertia. The product of inertia for a differential element 

dm with respect to a set of two orthogonal planes is defined as the product 

of the mass of the element and the perpendicular (or shortest) distances 

from the planes to the element. For example, this distance is x to the  

y–z plane and it is y to the x–z plane, Fig. 21–1. The product of inertia dIxy 

for the element is therefore

dIxy = xy dm

Note also that dIyx = dIxy. By integrating over the entire mass, the 

products of inertia of the body with respect to each combination of 

planes can be expressed as

 

 Ixy = Iyx = Lm
xy dm

 Iyz = Izy = Lm
yz dm

 Ixz = Izx = Lm
xz dm

 (21–2)

z

dm

rz

rx

ry

z

x
y

x

y
O

Fig. 21–1 
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Unlike the moment of inertia, which is always positive, the product of 

inertia may be positive, negative, or zero. The result depends on the 

algebraic signs of the two defining coordinates, which vary independently 

from one another. In particular, if either one or both of the orthogonal 

planes are planes of symmetry for the mass, the product of inertia with 

respect to these planes will be zero. In such cases, elements of mass will 

occur in pairs located on each side of the plane of symmetry. On one side 

of the plane the product of inertia for the element will be positive, while 

on the other side the product of inertia of the corresponding element will 

be negative, the sum therefore yielding zero. Examples of this are shown 

in Fig. 21–2. In the first case, Fig. 21–2a, the y–z plane is a plane of 

symmetry, and hence Ixy = Ixz = 0. Calculation of Iyz will yield a positive 

result, since all elements of mass are located using only positive y and z 

coordinates. For the cylinder, with the coordinate axes located as shown 

in Fig. 21–2b, the x–z and y–z planes are both planes of symmetry. Thus, 

Ixy = Iyz = Izx = 0.

Parallel-Axis and Parallel-Plane Theorems.  The techniques 

of integration used to determine the moment of inertia of a body were 

described in Sec. 17.1. Also discussed were methods to determine the 

moment of inertia of a composite body, i.e., a body that is composed of 

simpler segments, as tabulated on the inside back cover. In both of these 

cases the parallel-axis theorem is often used for the calculations. This 

theorem, which was developed in Sec. 17.1, allows us to transfer the 

moment of inertia of a body from an axis passing through its mass 

center G to a parallel axis passing through some other point. If G has 

coordinates xG , yG , zG defined with respect to the x, y, z axes, Fig. 21–3, 

then the parallel-axis equations used to calculate the moments of inertia 

about the x, y, z axes are

 

 Ixx = (Ix�x�)G + m(yG
2 + zG

2 )

 Iyy = (Iy�y�)G + m(xG
2 + zG

2 )

 Izz = (Iz�z�)G + m(xG
2 + yG

2 )

 (21–3)

x
y

O

z

(a) (b)

x
y

z

O

Fig. 21–2 

z

x

y

y¿

z¿

x¿

G

zG

xG

yG

Fig. 21–3 
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The products of inertia of a composite body are computed in the same 

manner as the body’s moments of inertia. Here, however, the parallel-
plane theorem is important. This theorem is used to transfer the products 

of inertia of the body with respect to a set of three orthogonal planes 

passing through the body’s mass center to a corresponding set of three 

parallel planes passing through some other point O. Defining the 

perpendicular distances between the planes as xG , yG, and zG , Fig. 21–3, 

the parallel-plane equations can be written as

 

 Ixy = (Ix�y�)G + mxGyG

 Iyz = (Iy�z�)G + myGzG

 Izx = (Iz�x�)G + mzGxG

 (21–4)

The derivation of these formulas is similar to that given for the parallel-

axis equation, Sec. 17.1.

Inertia Tensor. The inertial properties of a body are therefore 

completely characterized by nine terms, six of which are independent of 

one another. This set of terms is defined using Eqs. 21–1 and 21–2 and 

can be written as £ Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

≥
This array is called an inertia tensor.* It has a unique set of values for a 

body when it is determined for each location of the origin O and 

orientation of the coordinate axes.

In general, for point O we can specify a unique axes inclination for 

which the products of inertia for the body are zero when computed with 

respect to these axes. When this is done, the inertia tensor is said to be 

“diagonalized” and may be written in the simplified form£ Ix 0 0

0 Iy 0

0 0 Iz

≥
Here Ix = Ixx , Iy = Iyy , and Iz = Izz are termed the principal moments of 
inertia for the body, which are computed with respect to the principal 
axes of inertia. Of these three principal moments of inertia, one will be a 

maximum and another a minimum of the body’s moment of inertia.

z

x

y

y¿

z¿

x¿

G

zG

xG

yG

Fig. 21–3 (repeated) 

*The negative signs are here as a consequence of the development of angular momentum, 

Eqs. 21–10.

The dynamics of the space shuttle while 
it orbits the earth can be predicted only 
if its moments and products of inertia 
are known relative to its mass center. 
(©Ablestock/Getty Images)
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The mathematical determination of the directions of principal axes of 

inertia will not be discussed here (see Prob. 21–22). However, there are 

many cases in which the principal axes can be determined by inspection. 

From the previous discussion it was noted that if the coordinate axes are 

oriented such that two of the three orthogonal planes containing the axes 

are planes of symmetry for the body, then all the products of inertia for 

the body are zero with respect to these coordinate planes, and hence 

these coordinate axes are principal axes of inertia. For example, the  

x, y, z axes shown in Fig. 21–2b represent the principal axes of inertia for 

the cylinder at point O.

Moment of Inertia About an Arbitrary Axis. Consider the 

body shown in Fig. 21–4, where the nine elements of the inertia tensor 

have been determined with respect to the x, y, z axes having an origin at O. 

Here we wish to determine the moment of inertia of the body about the 

Oa axis, which has a direction defined by the unit vector ua. By definition 

IOa = 1b2 dm, where b is the perpendicular distance from dm to Oa. If 

the position of dm is located using r, then b = r sin u, which represents 

the magnitude of the cross product ua * r. Hence, the moment of inertia 

can be expressed as

IOa = Lm
� (ua * r) � 2dm = Lm

(ua * r) # (ua * r)dm

Provided ua = ux i + uy j + uz k and r = xi + yj + zk, then ua * r =
(uyz - uzy)i + (uzx - uxz)j + (uxy - uyx)k. After substituting and 

performing the dot-product operation, the moment of inertia is

 IOa = Lm
[(uyz - uzy)2 + (uzx - uxz)2 + (uxy - uyx)2]dm

 = ux
2

Lm
(y2 + z2)dm + uy

2

Lm
(z2 + x2)dm + uz

2

Lm
(x2 + y2) dm

- 2uxuy Lm
xy dm - 2uyuz Lm

yz dm - 2uzux Lm
zx dm

Recognizing the integrals to be the moments and products of inertia of 

the body, Eqs. 21–1 and 21–2, we have

 IOa = Ixxux
2 + Iyyuy

2 + Izzuz
2 - 2Ixyuxuy - 2Iyzuyuz - 2Izxuzux  (21–5)

Thus, if the inertia tensor is specified for the x, y, z axes, the moment of 

inertia of the body about the inclined Oa axis can be found. For the 

calculation, the direction cosines ux , uy , uz of the axes must be determined. 

These terms specify the cosines of the coordinate direction angles a, b, g 

made between the positive Oa axis and the positive x, y, z axes, 

respectively (see Appendix B).

z

x

y
O

b � r sin u

a

ua

r

dm

u

Fig. 21–4 
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Determine the moment of inertia of the bent rod shown in Fig. 21–5a 

about the Aa axis. The mass of each of the three segments is given in 

the figure.

SOLUTION
Before applying Eq. 21–5, it is first necessary to determine the moments 

and products of inertia of the rod with respect to the x, y, z axes. This is 

done using the formula for the moment of inertia of a slender rod, 

I = 1
12 ml2, and the parallel-axis and parallel-plane theorems, Eqs. 21–3 

and 21–4. Dividing the rod into three parts and locating the mass center 

of each segment, Fig. 21–5b, we have

 Ixx = 3 1
12(2)(0.2)2 + 2(0.1)24 + [0 + 2(0.2)2]

 + 3 1
12(4)(0.4)2 + 4((0.2)2 + (0.2)2)4 = 0.480 kg # m2

 Iyy = 3 1
12(2)(0.2)2 + 2(0.1)24 + 3 1

12(2)(0.2)2 + 2((-0.1)2 + (0.2)2)4
 + [0 + 4((-0.2)2 + (0.2)2)] = 0.453 kg # m2

 Izz = 30 + 04 + 3 1
12(2)(0.2)2 + 2(-0.1)24 + 3 1

12(4)(0.4)2 +

 4((-0.2)2 + (0.2)2)4  = 0.400 kg # m2

 Ixy = [0 + 0] + [0 + 0] + [0 + 4(-0.2)(0.2)] = -0.160 kg # m2

 Iyz = [0 + 0] + [0 + 0] + [0 + 4(0.2)(0.2)] = 0.160 kg # m2

 Izx = [0 + 0] + [0 + 2(0.2)(-0.1)] +

 [0 + 4(0.2)(-0.2)] = -0.200 kg # m2

The Aa axis is defined by the unit vector

uAa =
rD

rD
=

-0.2i + 0.4j + 0.2k

2(-0.2)2 + (0.4)2 + (0.2)2
= -0.408i + 0.816j + 0.408k

Thus,

 ux = -0.408  uy = 0.816  uz = 0.408 

Substituting these results into Eq. 21–5 yields

 IAa = Ixxux
2 + Iyyuy

2 + Izzuz
2 - 2Ixyuxuy - 2Iyzuyuz - 2Izxuzux

 = 0.480(-0.408)2 + (0.453)(0.816)2 + 0.400(0.408)2

  - 2(-0.160)(-0.408)(0.816) - 2(0.160)(0.816)(0.408)

  - 2(-0.200)(0.408)(-0.408)

 = 0.169 kg # m2 Ans.

EXAMPLE   21.1

y

2 kg

0.4 m

0.2 m

(a)

D

a4 kg0.2 m

z

A

B C
2 kg

0.2 m

x

z

x

y
A

B
C

D

2 kg
(0, 0, 0.1)

2 kg
(�0.1, 0, 0.2)

4 kg
(�0.2, 0.2, 0.2)

(b)

Fig. 21–5 
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*21–4. Determine the moments of inertia Ix and Iy of the 

paraboloid of revolution. The mass of the paraboloid is 

20 slug.

2 ft

2 ft

z

x

y

z2 � 2y

Prob. 21–4

21–5. Determine by direct integration the product of 

inertia Iyz for the homogeneous prism. The density of the 

material is r. Express the result in terms of the total mass m 

of the prism.

21–6. Determine by direct integration the product of 

inertia Ixy for the homogeneous prism. The density of the 

material is r. Express the result in terms of the total mass m 

of the prism.

a

x

y

z

a

h

Probs. 21–5/6

21–1. Show that the sum of the moments of inertia of a 

body, Ixx + Iyy + Izz, is independent of the orientation of the 

x, y, z axes and thus depends only on the location of the 

origin.

21–2. Determine the moment of inertia of the cone with 

respect to a vertical y axis passing through the cone’s center 

of mass. What is the moment of inertia about a parallel axis 

y � that passes through the diameter of the base of the cone? 

The cone has a mass m.

h

x

y

a

y y¿–

Prob. 21–2

21–3. Determine moment of inertia Iy of the solid formed 

by revolving the shaded area around the x axis. The density 

of the material is r = 12 slug>ft3.

4 ft

2 ft

y

x

y2 � x

Prob. 21–3

PROBLEMS
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21–7. Determine the product of inertia Ixy of the object 

formed by revolving the shaded area about the line x = 5 ft. 

Express the result in terms of the density of the material, r.

3 ft 2 ft

y

x

y2 � 3x

Prob. 21–7

*21–8. Determine the moment of inertia Iy of the object 

formed by revolving the shaded area about the line x = 5 ft. 

Express the result in terms of the density of the material, r.

3 ft 2 ft

y

x

y2 � 3x

Prob. 21–8

21–9. Determine the moment of inertia of the cone about 

the z �  axis. The weight of the cone is 15 lb, the height is 

h = 1.5 ft and the radius is r = 0.5 ft.

z¿

z¿

z
r

h

Prob. 21–9

21–10. Determine the radii of gyration kx and ky for the 

solid formed by revolving the shaded area about the y axis. 

The density of the material is r.

4 ft

4 ft

0.25 ft

0.25 ft

y

x

xy � 1

Prob. 21–10

21–11. Determine the moment of inertia of the cylinder 

with respect to the a–a axis of the cylinder. The cylinder has 

a mass m.

a

a

a

h

Prob. 21–11
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*21–12. Determine the moment of inertia Ixx of the composite 

plate assembly. The plates have a specific weight of 6 lb>ft2.
21–13. Determine the product of inertia Iyz of the composite 

plate assembly. The plates have a weight of 6 lb>ft2.

0.5 ft
0.5 ft

0.5 ft

0.5 ft

z

y

x

0.25 ft

Probs. 21–12/13

21–14. Determine the products of inertia Ixy, Iyz, and Ixz, of 

the thin plate. The material has a density per unit area 

of 50 kg>m2.

200 mm

400 mm

400 mm

z

yx

Prob. 21–14

21–15. Determine the moment of inertia of both the 1.5-kg 

rod and 4-kg disk about the z �  axis.

300 mm z

z¿

100 mm

Prob. 21–15

*21–16. The bent rod has a mass of 3 kg>m. Determine the 

moment of inertia of the rod about the O–a axis.

x y

0.5 m

0.3 m

1 m

a

O

z

Prob. 21–16

21–17. The bent rod has a weight of 1.5 lb>ft. Locate the 

center of gravity G(x, y) and determine the principal 

moments of inertia Ix� , Iy� , and Iz� of the rod with respect to 

the x �, y �, z� axes.

x

y

z

x¿

y¿

z¿

1 ft

1 ft

G

A

_
x

_
y

Prob. 21–17
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21–18. Determine the moment of inertia of the rod-and-

disk assembly about the x axis. The disks each have a weight 

of 12 lb. The two rods each have a weight of 4 lb, and their 

ends extend to the rims of the disks.

2 ft

1 ft

x

1 ft

Prob. 21–18

21–19. Determine the moment of inertia of the composite 

body about the aa axis. The cylinder weighs 20 lb, and each 

hemisphere weighs 10 lb.

2 ft

2 ft

a

a

Prob. 21–19

*21–20. Determine the moment of inertia of the disk 

about the axis of shaft AB. The disk has a mass of 15 kg.

30�
B

150 mm

A

Prob. 21–20

21–21. The thin plate has a weight of 5 lb and each of the 

four rods weighs 3 lb. Determine the moment of inertia of 

the assembly about the z axis.

z

x

y
0.5 ft

0.5 ft

0.5 ft0.5 ft

1.5 ft

Prob. 21–21
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21.2 Angular Momentum

In this section we will develop the necessary equations used to determine 

the angular momentum of a rigid body about an arbitrary point. These 

equations will provide a means for developing both the principle of 

impulse and momentum and the equations of rotational motion for a 

rigid body.

Consider the rigid body in Fig. 21–6, which has a mass m and center of 

mass at G. The X, Y, Z coordinate system represents an inertial frame of 

reference, and hence, its axes are fixed or translate with a constant 

velocity. The angular momentum as measured from this reference will be 

determined relative to the arbitrary point A. The position vectors rA  

and RA  are drawn from the origin of coordinates to point A and from A 

to the ith particle of the body. If the particle’s mass is mi , the angular 

momentum about point A is

(HA)i = RA * mi vi

where vi represents the particle’s velocity measured from the X, Y, Z 

coordinate system. If the body has an angular velocity V at the instant 

considered, vi may be related to the velocity of A by applying Eq. 20–7, i.e., 

vi = vA + V * RA

Thus,

 (HA)i = RA * mi(vA + V * RA)

 = (RAmi) * vA + RA * (V * RA)mi

Summing the moments of all the particles of the body requires an 

integration. Since mi S dm, we have

 HA = aLm
RAdm b * vA + Lm

RA * (V * RA)dm (21–6)

Z

X

Y

G
i

A
rA

vi

Inertial coordinate system

V

RA

vA

Fig. 21–6 
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Z

X

Y

z

x

y

O

i

RO

Fixed Point

(a)

Z

X

Y

Arbitrary Point

z

x

y

G

RG/A

A

mvG

HG

(c)

Fixed Point O. If A becomes a fixed point O in the body, Fig. 21–7a, 

then vA = 0 and Eq. 21–6 reduces to

 HO = Lm
RO * (V * RO) dm  (21–7)

Center of Mass G. If A is located at the center of mass G of the 

body, Fig. 21–7b, then 1mRA dm = 0 and

 HG = Lm
RG * (V * RG) dm  (21–8)

Arbitrary Point A. In general, A can be a point other than O or G, 

Fig. 21–7c, in which case Eq. 21–6 may nevertheless be simplified to the 

following form (see Prob. 21–23).

 HA = RG>A * mvG + HG  (21–9)

Here the angular momentum consists of two parts—the moment of the 

linear momentum mvG of the body about point A added (vectorially) to  

the angular momentum HG . Equation 21–9 can also be used to determine 

the angular momentum of the body about a fixed point O. The results, of 

course, will be the same as those found using the more convenient Eq. 21–7.

Rectangular Components of H. To make practical use of  

Eqs. 21–7 through 21–9, the angular momentum must be expressed in 

terms of its scalar components. For this purpose, it is convenient to 

Fig. 21–7 

Z

X

Y

z

x
yi

RG

G

Center of Mass

(b)



 21.2 ANGULAR MOMENTUM 603

21

choose a second set of x, y, z axes having an arbitrary orientation relative 

to the X, Y, Z axes, Fig. 21–7, and for a general formulation, note that  

Eqs. 21–7 and 21–8 are both of the form

H = Lm
R * (V * R)dm

Expressing H, R, and V in terms of x, y, z components, we have

Hx i + Hy j + Hz k = Lm
(xi + yj + zk) * [(vx i + vy j + vz k)

* (xi + yj + zk)]dm

Expanding the cross products and combining terms yields

Hx i + Hy j + Hz k = cvx Lm
(y2 + z2)dm - vy Lm

xy dm - vz Lm
xz dm d i

  + c -vx Lm
xy dm + vy Lm

(x2 + z2)dm - vz Lm
yz dm d j

 + c -vx Lm
zx dm - vy Lm

yz dm + vz Lm
(x2 + y2)dm dk

Equating the respective i, j, k components and recognizing that the 

integrals represent the moments and products of inertia, we obtain

  

Hx = Ixxvx - Ixyvy - Ixzvz     

 Hy = -Iyxvx + Iyyvy - Iyzvz   

 Hz = -Izxvx - Izyvy + Izzvz   

 (21–10)

These equations can be simplified further if the x, y, z coordinate axes 

are oriented such that they become principal axes of inertia for the body 

at the point. When these axes are used, the products of inertia 

Ixy = Iyz = Izx = 0, and if the principal moments of inertia about the x, y, 
z axes are represented as Ix = Ixx , Iy = Iyy , and Iz = Izz , the three 

components of angular momentum become

 Hx = Ixvx Hy = Iyvy Hz = Izvz  (21–11)
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Principle of Impulse and Momentum. Now that the 

formulation of the angular momentum for a body has been developed, 

the principle of impulse and momentum, as discussed in Sec. 19.2, can be 

used to solve kinetic problems which involve force, velocity, and time. For 

this case, the following two vector equations are available:

 m(vG)1 + � L
t2

t1

F dt = m(vG)2  (21–12)

 (HO)1 + � L
t2

t1

MO dt = (HO)2  (21–13)

In three dimensions each vector term can be represented by three scalar 

components, and therefore a total of six scalar equations can be written. 

Three equations relate the linear impulse and momentum in  

the x, y, z directions, and the other three equations relate the body’s 

angular impulse and momentum about the x, y, z axes. Before applying 

Eqs. 21–12 and 21–13 to the solution of problems, the material in  

Secs. 19.2 and 19.3 should be reviewed.

21.3 Kinetic Energy

In order to apply the principle of work and energy to solve problems 

involving general rigid body motion, it is first necessary to formulate 

expressions for the kinetic energy of the body. To do this, consider the 

rigid body shown in Fig. 21–8, which has a mass m and center of mass at G. 

The kinetic energy of the ith particle of the body having a mass mi and 

velocity vi , measured relative to the inertial X, Y, Z frame of reference, is

Ti =
1
2 mivi

2 = 1
2 mi(vi

# vi)

Provided the velocity of an arbitrary point A in the body is known, vi can 

be related to vA  by the equation vi = vA + V * RA, where V is the 

angular velocity of the body, measured from the X, Y, Z coordinate 

system, and RA  is a position vector extending from A to i. Using this 

expression, the kinetic energy for the particle can be written as

  Ti =
1
2 mi(vA + V * RA) # (vA + V * RA)

  = 1
2(vA

# vA)mi + vA
# (V * RA)mi + 1

2 

(V * RA) # (V * RA)mi

The kinetic energy for the entire body is obtained by summing the kinetic 

energies of all the particles of the body. This requires an integration. 

Since mi S dm, we get

T = 1
2 m(vA

# vA) + vA
# aV * Lm

RAdm b + 1
2 Lm

(V * RA) # (V * RA)dm

Z

X

Y
Inertial coordinate system

G

i

A

vi

RA

rA

V

vA

Fig. 21–8 

The motion of the astronaut is controlled 
by use of small directional jets attached to 
his or her space suit. The impulses these 
jets provide must be carefully specified in 
order to prevent tumbling and loss of 
orientation. (© NASA)
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The last term on the right can be rewritten using the vector identity 

a * b # c = a # b * c, where a = V, b = RA , and c = V * RA. The final 

result is

T = 1
2 m(vA

# vA) + vA
# 1V * Lm

RAdm2
 + 1

2 V # Lm
RA * (V * RA)dm (21–14)

This equation is rarely used because of the computations involving the 

integrals. Simplification occurs, however, if the reference point A is either 

a fixed point or the center of mass.

Fixed Point O. If A is a fixed point O in the body, Fig. 21–7a, then 

vA = 0, and using Eq. 21–7, we can express Eq. 21–14 as

T = 1
2 V # HO

If the x, y, z axes represent the principal axes of inertia for the body, then 

V = vx i + vy j + vz k and HO = Ixvx i + Iyvy j + Izvz k. Substituting 

into the above equation and performing the dot-product operations 

yields

 T = 1
2 Ixvx

2 + 1
2 Iyvy

2 + 1
2 Izvz

2  (21–15)

Center of Mass G. If A is located at the center of mass G of the 

body, Fig. 21–7b, then 1RA dm = 0 and, using Eq. 21–8, we can write  

Eq. 21–14 as

T = 1
2 mvG

2 + 1
2 V # HG

In a manner similar to that for a fixed point, the last term on the right 

side may be represented in scalar form, in which case

 T = 1
2 mvG

2 + 1
2 Ixvx

2 + 1
2 Iyvy

2 + 1
2 Izvz

2  (21–16)

Here it is seen that the kinetic energy consists of two parts; namely, the 

translational kinetic energy of the mass center, 1
2 mvG

2 , and the body’s 

rotational kinetic energy.

Principle of Work and Energy. Having formulated the kinetic 

energy for a body, the principle of work and energy can be applied to 

solve kinetics problems which involve force, velocity, and displacement. 
For this case only one scalar equation can be written for each body, 

namely,

 T1 + �U192 = T2  (21–17)

Before applying this equation, the material in Chapter 18 should be 

reviewed.
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(b)

�

�

G

A

m(vG)2

rG/A

(HG)2

G

A

W�t � 0

�Fdt

G

m(vG)1

rG/A

A

Fig. 21–9 

The rod in Fig. 21–9a has a weight per unit length of 1.5 lb>ft. 
Determine its angular velocity just after the end A falls onto the hook 

at E. The hook provides a permanent connection for the rod due to 

the spring-lock mechanism S. Just before striking the hook the rod is 

falling downward with a speed (vG)1 = 10 ft>s.

SOLUTION
The principle of impulse and momentum will be used since impact occurs.

Impulse and Momentum Diagrams. Fig. 21–9b. During the short 

time �t, the impulsive force F acting at A changes the momentum of 

the rod. (The impulse created by the rod’s weight W during this time 

is small compared to 1F dt, so that it can be neglected, i.e., the weight 

is a nonimpulsive force.) Hence, the angular momentum of the rod is 

conserved about point A since the moment of 1F dt about A is zero.

Conservation of Angular Momentum. Equation 21–9 must be used 

to find the angular momentum of the rod, since A does not become a 

fixed point until after the impulsive interaction with the hook. Thus, 

with reference to Fig. 21–9b, (HA)1 = (HA)2 , or

 rG>A * m(vG)1 = rG>A * m(vG)2 + (HG)2 (1)

From Fig. 21–9a, rG>A = 5-0.667i + 0.5j6  ft. Furthermore, the primed 

axes are principal axes of inertia for the rod because Ix�y�  = Ix�z� = Iz�y� = 0. 

Hence, from Eqs. 21–11, (HG)2 = Ix�vx i +  Iy�vy j + Iz�vz k. The principal 

moments of inertia are Ix� =  0.0272 slug # ft2, Iy� = 0.0155 slug # ft2, 

Iz� = 0.0427 slug # ft2 (see Prob. 21–17). Substituting into Eq. 1, we have

EXAMPLE   21.2

(-0.667i + 0.5j) * c a 4.5

32.2
b (-10k) d = (-0.667i + 0.5j) * c a 4.5

32.2
b (-vG)2 k d

+ 0.0272vx i + 0.0155vy j + 0.0427vz k

Expanding and equating the respective i, j, k components yields

  -0.699 = -0.0699(vG)2 + 0.0272vx (2)

  -0.932 = -0.0932(vG)2 + 0.0155vy (3)

  0 = 0.0427vz  (4)

Kinematics. There are four unknowns in the above equations; 

however, another equation may be obtained by relating V to (vG)2 

using kinematics. Since vz = 0 (Eq. 4) and after impact the rod rotates 

about the fixed point A, Eq. 20–3 can be applied, in which case 

(vG)2 = V * rG>A , or

-(vG)2 k =  (vx i + vy j) * (-0.667i + 0.5j)

  -(vG)2 = 0.5vx + 0.667vy  (5)

Solving Eqs. 2, 3 and 5 simultaneously yields

 (vG)2 = 5-8.41k6  ft>s V = 5-4.09i - 9.55j6  rad>s Ans.

z
z¿

1 ft

y

y¿
0.333 ft

0.667 ft
G

x
x¿

0.5 ft

A

(a)

S

E
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A 5@N # m torque is applied to the vertical shaft CD shown in Fig. 21–10a, 

which allows the 10-kg gear A to turn freely about CE. Assuming  

that gear A starts from rest, determine the angular velocity of CD after 

it has turned two revolutions. Neglect the mass of shaft CD and axle CE 

and assume that gear A can be approximated by a thin disk. Gear B  

is fixed.

SOLUTION
The principle of work and energy may be used for the solution. Why?

Work. If shaft CD, the axle CE, and gear A are considered as a system 

of connected bodies, only the applied torque M does work. For two 

revolutions of CD,  this work is  �U1-2 = (5 N # m)(4p rad) = 62.83 J.

Kinetic Energy. Since the gear is initially at rest, its initial kinetic 

energy is zero. A kinematic diagram for the gear is shown in Fig. 21–10b. 

If the angular velocity of CD is taken as VCD , then the angular velocity 

of gear A is VA = VCD + VCE . The gear may be imagined as a portion 

of a massless extended body which is rotating about the fixed point C. 

The instantaneous axis of rotation for this body is along line CH, 

because both points C and H on the body (gear) have zero velocity  

and must therefore lie on this axis. This requires that the components 

VCD and VCE be related by the equation vCD>0.1 m = vCE>0.3 m or 

vCE = 3vCD . Thus,

 VA = -vCE i + vCD k = -3vCD i + vCD k (1)

The x, y, z axes in Fig. 21–10a represent principal axes of inertia at C 

for the gear. Since point C is a fixed point of rotation, Eq. 21–15 may 

be applied to determine the kinetic energy, i.e.,

 T = 1
2 Ixvx

2 + 1
2 Iyvy

2 + 1
2 Izvz

2 (2)

Using the parallel-axis theorem, the moments of inertia of the gear 

about point C are as follows:

  Ix = 1
2 

(10 kg)(0.1 m)2 = 0.05 kg # m2 

  Iy = Iz = 1
4 

(10 kg)(0.1 m)2 + 10 kg(0.3 m)2 = 0.925 kg # m2

Since vx = -3vCD , vy = 0, vz = vCD , Eq. 2 becomes

 TA = 1
2 

(0.05)(-3vCD)2 + 0 + 1
2 

(0.925)(vCD)2 = 0.6875vCD
2  

Principle of Work and Energy. Applying the principle of work and 

energy, we obtain

  T1 + �U1-2 = T2 

  0 + 62.83 = 0.6875vCD
2

  vCD = 9.56 rad>s  Ans.

EXAMPLE   21.3

M � 5 N � m

D

(a)

y
x

B
0.1 m

z

0.3 m

A
C

E

(b)

E
A

H
D

C

z

x
0.1 m

0.3 m

VCD VA

VCE

Instantaneous
axis of rotation

Fig. 21–10 
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21–23. Show that if the angular momentum of a body is 

determined with respect to an arbitrary point A, then HA 

can be expressed by Eq. 21–9. This requires substituting 

RA = RG + RG>A into Eq. 21–6 and expanding, noting 

that1RG dm = 0 by definition of the mass center and 

vG = vA + V :  RG> A.

RA

RG

RG/A

G P

A
y

Y

Z
z

x

X

Prob. 21–23

*21–24. The 15-kg circular disk spins about its axle with a 

constant angular velocity of v1 = 10 rad>s. Simultaneously, 

the yoke is rotating with a constant angular velocity of 

v2 = 5 rad>s. Determine the angular momentum of the 

disk about its center of mass O, and its kinetic energy.

v1 � 10 rad/s

v2 � 5 rad/s

150 mm

yx

z

O

Prob. 21–24

21–22. If a body contains no planes of symmetry, the 

principal moments of inertia can be determined 

mathematically. To show how this is done, consider the rigid 

body which is spinning with an angular velocity V, directed 

along one of its principal axes of inertia. If the principal 

moment of inertia about this axis is I, the angular momentum 

can be expressed as H = IV = Ivx  i + Ivy  j + Ivz  k. The 

components of H may also be expressed by Eqs. 21–10, 

where the inertia tensor is assumed to be known. Equate 

the i, j, and k components of both expressions for H and 

consider vx, vy, and vz to be unknown. The solution of these 

three equations is obtained provided the determinant of the 

coefficients is zero. Show that this determinant, when 

expanded, yields the cubic equation

I3 - (Ixx + Iyy + Izz)I
2

   + (IxxIyy + IyyIzz + IzzIxx - I2
xy - I2

yz - I2
zx)I

   - (IxxIyyIzz - 2IxyIyzIzx - IxxI
2
yz - IyyI

2
zx - IzzI

2
xy) = 0

The three positive roots of I, obtained from the solution of 

this equation, represent the principal moments of inertia Ix, 

Iy, and Iz.

y

V

z

x

O

Prob. 21–22

PROBLEMS
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21–25. The large gear has a mass of 5 kg and a radius of 

gyration of kz = 75 mm. Gears B and C each have a mass of 

200 g and a radius of gyration about the axis of their connecting 

shaft of 15 mm. If the gears are in mesh and C has an angular 

velocity of Vc = 515j6  rad>s, determine the total angular 

momentum for the system of three gears about point A.

40 mm

40 mm

100 mm
C

A45�

x

z

y

B vC � {15j} rad/s

Prob. 21–25

21–26. The circular disk has a weight of 15 lb and is 

mounted on the shaft AB at an angle of 45� with the 

horizontal. Determine the angular velocity of the shaft 

when t = 3 s if a constant torque M = 2 lb # ft is applied to 

the shaft. The shaft is originally spinning at v1 = 8 rad>s 

when the torque is applied.

21–27. The circular disk has a weight of 15 lb and is 

mounted on the shaft AB at an angle of 45� with the 

horizontal. Determine the angular velocity of the shaft 

when t = 2 s if a torque M = (4e 0.1t ) lb # ft, where t is in 

seconds, is applied to the shaft. The shaft is originally 

spinning at v1 = 8 rad>s when the torque is applied.

v1 � 8 rad/s
BA

45�

0.8 ft

M

Probs. 21–26/27

*21–28. The rod assembly is supported at G by a 

ball-and-socket joint. Each segment has a mass of 0.5 kg>m. 

If the assembly is originally at rest and an impulse of 

I = 5-8k6  N # s is applied at D, determine the angular 

velocity of the assembly just after the impact.

z

1 m

D

1 m

x
y

C

G

B

A

0.5 m

0.5 m
I � {–8k} N � s

Prob. 21–28

21–29. The 4-lb rod AB is attached to the 1-lb collar at A 

and a 2-lb link BC using ball-and-socket joints. If the rod is 

released from rest in the position shown, determine the 

angular velocity of the link after it has rotated 180�.

0.5 m

1.2 m

1.3 m

z

y

x

A

C

B

Prob. 21–29



610  CHAPTER 21  THREE-DIMENSIONAL KINET ICS OF A RIG ID BODY

21

21–30. The rod weighs 3 lb>ft and is suspended from 

parallel cords at A and B. If the rod has an angular velocity 

of 2 rad>s about the z axis at the instant shown, determine 

how high the center of the rod rises at the instant the rod 

momentarily stops swinging.

v � 2 rad/s

3 ft

3 ft
z

A

B

Prob. 21–30

21–31. The 4-lb rod AB is attached to the rod BC and 

collar A using ball-and-socket joints. If BC has a constant 

angular velocity of 2 rad>s, determine the kinetic energy  

of AB when it is in the position shown. Assume the angular 

velocity of AB is directed perpendicular to the axis of AB.

2 rad/s

1 ft

z

y

x

A

3 ft

B

C

1 ft

Prob. 21–31

*21–32. The 2-kg thin disk is connected to the slender rod 

which is fixed to the ball-and-socket joint at A. If it is 

released from rest in the position shown, determine the spin 

of the disk about the rod when the disk reaches its lowest 

position. Neglect the mass of the rod. The disk rolls without 

slipping.

0.1 m

30�

C

B

A

0.5 m

Prob. 21–32

21–33. The 20-kg sphere rotates about the axle with a 

constant angular velocity of vs = 60 rad>s. If shaft AB is 

subjected to a torque of M = 50 N # m, causing it to rotate, 

determine the value of vp after the shaft has turned 90� 
from the position shown. Initially, vp = 0. Neglect the mass 

of arm CDE.

z

x

D

C B

A

E

y

0.1 m

0.4 m

0.3 m

vs � 60 rad/s

M � 50 N�m

vp

Prob. 21–33
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21–34. The 200-kg satellite has its center of mass at 

point  G. Its radii of gyration about the z �, x �, y � axes are 

kz� = 300 mm, kx� = ky� = 500 mm, respectively. At the 

instant shown, the satellite rotates about the x �, y �, and z �  
axes with the angular velocity shown, and its center of mass G 

has a velocity of vG = 5-250i + 200j +  120k6  m>s. 

Determine the angular momentum of the satellite about 

point A at this instant.

21–35. The 200-kg satellite has its center of mass at point G. 

Its radii of gyration about the  z �,  x �, y � axes are kz� = 300 mm, 

kx� = ky� = 500 mm, respectively. At the instant shown, the 

satellite rotates about the x �, y �, and z �  axes with the angular 

velocity shown, and its center of mass G has a velocity 

of  vG = 5-250i + 200j +  120k6  m>s. Determine the 

kinetic energy of the satellite at this instant.

x¿

x

y¿

y

G

A

800 mm

Vx¿ � 600 rad/s

Vz¿ � 1250 rad/s

Vy¿ � 300 rad/s

z, z¿

vG

Probs. 21–34/35

*21–36. The 15-kg rectangular plate is free to rotate about 

the y axis because of the bearing supports at A and B. When 

the plate is balanced in the vertical plane, a 3-g bullet is 

fired into it, perpendicular to its surface, with a velocity 

v = 5-2000i6  m>s. Compute the angular velocity of the 

plate at the instant it has rotated 180�. If the bullet strikes 

corner D with the same velocity v, instead of at C, does the 

angular velocity remain the same? Why or why not?

D

A

y
x

z

150 mm

150 mm
150 mm

v

C

B

Prob. 21–36

21–37. The 5-kg thin plate is suspended at O using a ball-

and-socket joint. It is rotating with a constant angular velocity 

V = 52k6  rad>s when the corner A strikes the hook at S, 

which provides a permanent connection. Determine the 

angular velocity of the plate immediately after impact.

S

O

400 mm

300 mm

300 mm

z

y

x

A

V� {2k} rad/s

Prob. 21–37

21–38. Determine the kinetic energy of the 7-kg disk and 

1.5-kg rod when the assembly is rotating about the z axis at 

v = 5 rad>s.

21–39. Determine the angular momentum Hz  of the 7-kg 

disk and 1.5-kg rod when the assembly is rotating about the 

z axis at v = 5 rad>s.

B

C

200 mm

v � 5 rad/s

A

z

100 mm

D

Probs. 21–38/39
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*21.4 Equations of Motion

Having become familiar with the techniques used to describe both the 

inertial properties and the angular momentum of a body, we can now 

write the equations which describe the motion of the body in their most 

useful forms.

Equations of Translational Motion. The translational motion 

of a body is defined in terms of the acceleration of the body’s mass 

center, which is measured from an inertial X, Y, Z reference. The equation 

of translational motion for the body can be written in vector form as

 �F = maG (21–18)

or by the three scalar equations

 

 �Fx = m(aG)x

 �Fy = m(aG)y

 �Fz = m(aG)z

 (21–19)

Here, �F = �Fx i + �Fy j + �Fz k represents the sum of all the external 

forces acting on the body.

Equations of Rotational Motion. In Sec. 15.6, we developed 

Eq. 15–17, namely, 

 �MO = H
#
O (21–20)

which states that the sum of the moments of all the external forces 

acting on a system of particles (contained in a rigid body) about a fixed 

point O is equal to the time rate of change of the total angular momentum 

of the body about point O. When moments of the external forces acting on 

the particles are summed about the system’s mass center G, one again 

obtains the same simple form of Eq. 21–20, relating the moment 

summation �MG to the angular momentum HG . To show this, consider 

the system of particles in Fig. 21–11, where X, Y, Z represents an inertial 

frame of reference and the x, y, z axes, with origin at G, translate with 

respect to this frame. In general, G is accelerating, so by definition the 

translating frame is not an inertial reference. The angular momentum of 

the ith particle with respect to this frame is, however,

(Hi)G = ri>G * mi vi>G
where ri>G and vi>G represent the position and velocity of the ith particle 

with respect to G. Taking the time derivative we have

(H
#
i)G = r

#
i>G * mi vi>G + ri>G * miv

#
i>G

Z

Y

y

z

rG

X

x
ri

ri/G i

Inertial coordinate system

G

O

Fig. 21–11 
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By definition, vi>G = r
#
i>G . Thus, the first term on the right side is zero 

since the cross product of the same vectors is zero. Also, ai>G = v
#
i>G , 

so that

(H
#
i)G = (ri>G * mi ai>G)

Similar expressions can be written for the other particles of the body. 

When the results are summed, we get

H
#
G = �(ri>G * mi ai>G)

Here H
#
G is the time rate of change of the total angular momentum of the 

body computed about point G.

The relative acceleration for the ith particle is defined by the equation 

ai>G = ai - aG , where ai and aG represent, respectively, the accelerations 

of the ith particle and point G measured with respect to the inertial frame 
of reference. Substituting and expanding, using the distributive property 

of the vector cross product, yields

H
#
G = �(ri>G * mi ai) - (�mi ri>G) * aG

By definition of the mass center, the sum (�mi ri>G) = (�mi)r is equal to 

zero, since the position vector r relative to G is zero. Hence, the last term 

in the above equation is zero. Using the equation of motion, the product 

mi ai can be replaced by the resultant external force Fi acting on the ith 

particle. Denoting �MG = �(ri>G * Fi), the final result can be written as

 �MG = H
#
G (21–21)

The rotational equation of motion for the body will now be developed 

from either Eq. 21–20 or 21–21. In this regard, the scalar components of 

the angular momentum HO or HG are defined by Eqs. 21–10 or, if principal 

axes of inertia are used either at point O or G, by Eqs. 21–11. If these 

components are computed about x, y, z axes that are rotating with an 

angular velocity � that is different from the body’s angular velocity V, 

then the time derivative H
#
= dH>dt, as used in Eqs. 21–20 and 21–21, 

must account for the rotation of the x, y, z axes as measured from the 

inertial X, Y, Z axes. This requires application of Eq. 20–6, in which case 

Eqs. 21–20 and 21–21 become

  �MO = (H
#
O)xyz + � * HO 

  �MG = (H
#
G)xyz + � * HG 

(21–22)

Here (H
#
)xyz is the time rate of change of H measured from the x, y, z 

reference.

There are three ways in which one can define the motion of the x, y, z 

axes. Obviously, motion of this reference should be chosen so that it will 

yield the simplest set of moment equations for the solution of a particular 

problem.
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x, y, z Axes Having Motion � =  0. If the body has general 

motion, the x, y, z axes can be chosen with origin at G, such that the axes 

only translate relative to the inertial X, Y, Z frame of reference. Doing 

this simplifies Eq. 21–22, since � = 0. However, the body may have a 

rotation V about these axes, and therefore the moments and products of 

inertia of the body would have to be expressed as functions of time. In 

most cases this would be a difficult task, so that such a choice of axes has 

restricted application.

x, y, z Axes Having Motion � = V. The x, y, z axes can be 

chosen such that they are fixed in and move with the body. The moments 

and products of inertia of the body relative to these axes will then be 

constant during the motion. Since � = V, Eqs. 21–22 become

  �MO = (H
#

O)xyz + V * HO 

  �MG = (H
#

G)xyz + V * HG 
(21–23)

We can express each of these vector equations as three scalar equations 

using Eqs. 21–10. Neglecting the subscripts O and G yields

 �Mx = Ixxv
#

x - (Iyy - Izz)vyvz - Ixy(v
#

y - vzvx)

  - Iyz(vy
2 - vz

2) - Izx(v
#

z + vxvy)

  �My = Iyyv
#

y - (Izz - Ixx)vzvx - Iyz(v
#

z - vxvy) (21–24)

  - Izx(vz
2 - vx

2) - Ixy(v
#

x + vyvz)

 �Mz = Izzv
#

z - (Ixx - Iyy)vxvy - Izx(v
#

x - vyvz)

  - Ixy(vx
2 - vy

2) - Iyz(v
#

y + vzvx)

If the x, y, z axes are chosen as principal axes of inertia, the products of 

inertia are zero, Ixx = Ix , etc., and the above equations become

 

 �Mx = Ixv
#

x - (Iy - Iz)vyvz

 �My = Iyv
#

y - (Iz - Ix)vzvx

 �Mz = Izv
#

z - (Ix - Iy)vxvy

 (21–25)

This set of equations is known historically as the Euler equations of 
motion, named after the Swiss mathematician Leonhard Euler, who first 

developed them. They apply only for moments summed about either 

point O or G.
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When applying these equations it should be realized that v
#

x , v
#

y , v
#

z 

represent the time derivatives of the magnitudes of the x, y, z components 

of V as observed from x, y, z. To determine these components, it is first 

necessary to find vx , vy , vz when the x, y, z axes are oriented in a general 
position and then take the time derivative of the magnitude of these 

components, i.e., (V
#
)xyz . However, since the x, y, z axes are rotating at 

� = V, then from Eq. 20–6, it should be noted that V
# = (V

#
)xyz + V * V. 

Since V * V = 0, then V
# = (V

#
)xyz . This important result indicates that 

the time derivative of V with respect to the fixed X, Y, Z axes, that is V
#
, 

can also be used to obtain (V
#
)xyz . Generally this is the easiest way to 

determine the result. See Example 21.5.

x, y, z Axes Having Motion � 3 V. To simplify the 

calculations for the time derivative of V, it is often convenient to choose 

the x, y, z axes having an angular velocity � which is different from the 

angular velocity V of the body. This is particularly suitable for the 

analysis of spinning tops and gyroscopes which are symmetrical about 

their spinning axes.* When this is the case, the moments and products of 

inertia remain constant about the axis of spin.

Equations 21–22 are applicable for such a set of axes. Each of these 

two vector equations can be reduced to a set of three scalar equations 

which are derived in a manner similar to Eqs. 21–25,† i.e.,

 

 �Mx = Ixv
#

x - Iy�zvy + Iz�yvz

 �My = Iyv
#

y - Iz�xvz + Ix�zvx

 �Mz = Izv
#

z - Ix�yvx + Iy�xvy

 (21–26)

Here �x , �y , �z represent the x, y, z components of �, measured from 

the inertial frame of reference, and v
#

x , v
#

y , v
#

z must be determined relative 

to the x, y, z axes that have the rotation �. See Example 21.6.

Any one of these sets of moment equations, Eqs. 21–24, 21–25, or  

21–26, represents a series of three first-order nonlinear differential 

equations. These equations are “coupled,” since the angular-velocity 

components are present in all the terms. Success in determining the 

solution for a particular problem therefore depends upon what is 

unknown in these equations. Difficulty certainly arises when one 

attempts to solve for the unknown components of V when the external 

moments are functions of time. Further complications can arise if the 

moment equations are coupled to the three scalar equations of 

translational motion, Eqs. 21–19. This can happen because of the 

existence of kinematic constraints which relate the rotation of the body 

to the translation of its mass center, as in the case of a hoop which rolls 

*A detailed discussion of such devices is given in Sec. 21.5.
†See Prob. 21–42.
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without slipping. Problems that require the simultaneous solution of 

differential equations are generally solved using numerical methods with 

the aid of a computer. In many engineering problems, however, we are 

given information about the motion of the body and are required to 

determine the applied moments acting on the body. Most of these 

problems have direct solutions, so that there is no need to resort to 

computer techniques.

Procedure for Analysis

Problems involving the three-dimensional motion of a rigid body 

can be solved using the following procedure.

Free-Body Diagram.
  Draw a free-body diagram of the body at the instant considered 

and specify the x, y, z coordinate system. The origin of this 

reference must be located either at the body’s mass center G, or 

at point O, considered fixed in an inertial reference frame and 

located either in the body or on a massless extension of the body.

  Unknown reactive force components can be shown having a 

positive sense of direction.

  Depending on the nature of the problem, decide what type of 

rotational motion � the x, y, z coordinate system should have, 

i.e., � = 0, � = V, or � � V. When choosing, keep in mind 

that the moment equations are simplified when the axes move in 

such a manner that they represent principal axes of inertia for the 

body at all times.

  Compute the necessary moments and products of inertia for the 

body relative to the x, y, z axes.

Kinematics.
  Determine the x, y, z components of the body’s angular velocity 

and find the time derivatives of V.

  Note that if � = V, then V
# = (V

#
)xyz. Therefore we can either 

find the time derivative of V with respect to the X, Y, Z axes, V
#
, 

and then determine its components v
#

x , v
#

y , v
#

z , or we can find the 

components of V along the x, y, z axes, when the axes are oriented 

in a general position, and then take the time derivative of the 

magnitudes of these components, (V
#
)xyz .

Equations of Motion.

  Apply either the two vector equations 21–18 and 21–22 or the six 

scalar component equations appropriate for the x, y, z coordinate 

axes chosen for the problem.
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The gear shown in Fig. 21–12a has a mass of 10 kg and is mounted at 

an angle of 10° with the rotating shaft having negligible mass. If 

Iz = 0.1 kg # m2, Ix = Iy = 0.05 kg # m2, and the shaft is rotating with a 

constant angular velocity of v = 30 rad>s, determine the components 

of reaction that the thrust bearing A and journal bearing B exert on 

the shaft at the instant shown.

SOLUTION
Free-Body Diagram. Fig. 21–12b. The origin of the x, y, z coordinate 

system is located at the gear’s center of mass G, which is also a fixed 

point. The axes are fixed in and rotate with the gear so that these axes 

will then always represent the principal axes of inertia for the gear. 

Hence � = V.

Kinematics. As shown in Fig. 21–12c, the angular velocity V of the 

gear is constant in magnitude and is always directed along the axis of 

the shaft AB. Since this vector is measured from the X, Y, Z inertial 

frame of reference, for any position of the x, y, z axes,

vx = 0 vy = -30 sin 10� vz = 30 cos 10�

These components remain constant for any general orientation of 

the x, y, z axes, and so v
#

x = v
#

y = v
#

z = 0. Also note that since � = V, 

then V
# = (V

#
)xyz. Therefore, we can find these time derivatives relative 

to the X, Y, Z axes. In this regard V has a constant magnitude and 

direction (+Z) since V
# = 0, and so v

#
x = v

#
y = v

#
z = 0. Furthermore, 

since G is a fixed point, (aG)x = (aG)y = (aG)z = 0.

Equations of Motion. Applying Eqs. 21–25 (� = V) yields

 �Mx = Ixv
#

x - (Iy - Iz)vyvz

 -(A Y)(0.2) + (BY)(0.25) = 0 - (0.05 - 0.1)(-30 sin 10�)(30 cos 10�)

 -0.2A Y + 0.25BY = -7.70 (1)

�My = Iyv
#

y - (Iz - Ix)vzvx

A X(0.2) cos 10� - BX(0.25) cos 10� = 0 - 0

 A X = 1.25BX  (2)

�Mz = Izv
#

z - (Ix - Iy)vxvy

A X(0.2) sin 10� - BX(0.25) sin 10� = 0 - 0

A X = 1.25BX  (check)

Applying Eqs. 21–19, we have

�FX = m(aG)X; A X + BX = 0 (3)

�FY = m(aG)Y ; A Y + BY - 98.1 = 0 (4)

�FZ = m(aG)Z; A Z = 0 Ans.

Solving Eqs. 1 through 4 simultaneously gives

 AX = BX = 0  AY = 71.6 N  BY = 26.5 N Ans.

EXAMPLE   21.4

0.2 m

0.25 m

Z

Y

X, x

y
z

A

B

(a)

10�10�

G

v � 30 rad/s

10�

0.2 m

0.25 m
x

y

z

A

B

(b)

98.1 N

BX

AX

AY

BY

10�

G

AZ

x

y

z

A

B

G

(c)

10�

V

10�

Fig. 21–12 
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EXAMPLE   21.5

The airplane shown in Fig. 21–13a is in the process of making a steady 

horizontal turn at the rate of vp . During this motion, the propeller is 

spinning at the rate of vs . If the propeller has two blades, determine 

the moments which the propeller shaft exerts on the propeller at the 

instant the blades are in the vertical position. For simplicity, assume the 

blades to be a uniform slender bar having a moment of inertia I about 

an axis perpendicular to the blades passing through the center of the 

bar, and having zero moment of inertia about a longitudinal axis.

Vs

Vp

(a)

x

y

z

G

FR

MR

(b)

 Z, z¿, z

X, x¿, x

 Y, y¿, y(c)

Vs

Vp

Fig. 21–13

SOLUTION
Free-Body Diagram. Fig. 21–13b. The reactions of the connecting 

shaft on the propeller are indicated by the resultants FR and MR . (The 

propeller’s weight is assumed to be negligible.) The x, y, z axes will be 

taken fixed to the propeller, since these axes always represent the 

principal axes of inertia for the propeller. Thus, � = V. The moments 

of inertia Ix and Iy are equal (Ix = Iy = I ) and Iz = 0.

Kinematics. The angular velocity of the propeller observed from 

the X, Y, Z axes, coincident with the x, y, z axes, Fig. 21–13c, is 

V = Vs + Vp = vs i + vp k, so that the x, y, z components of V are

vx = vs  vy = 0 vz = vp

Since � = V, then V
# = (V

#
)xyz . To find V

#
, which is the time 

derivative with respect to the fixed X, Y, Z axes, we can use Eq. 20–6 

since V changes direction relative to X, Y, Z. The time rate of change 

of each of these components V
# = V

#
s + V

#
p relative to the X, Y, Z axes 

can be obtained by introducing a third coordinate system x �, y �, z �, 
which has an angular velocity � � = Vp and is coincident with the 

X, Y, Z axes at the instant shown. Thus

(©
 R

.C
. 

H
ib

b
e
le

r)
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 V
# = (V

#
)x� y� z� + Vp * V

= (V
#

s)x� y� z� + (V
#

p)x� y� z� + Vp * (Vs + Vp)

= 0 + 0 + Vp * Vs + Vp * Vp

= 0 + 0 + vp k * vs i + 0 = vpvs j

Since the X, Y, Z axes are coincident with the x, y, z axes at the instant 

shown, the components of V
#
 along x, y, z are therefore

v
#

x = 0  v
#

y = vpvs  v
#

z = 0

These same results can also be determined by direct calculation of 

(V
#
)xyz; however, this will involve a bit more work. To do this, it will be 

necessary to view the propeller (or the x, y, z axes) in some general 
position such as shown in Fig. 21–13d. Here the plane has turned 

through an angle f (phi) and the propeller has turned through an 

angle c (psi) relative to the plane. Notice that Vp is always directed 

along the fixed Z axis and Vs follows the x axis. Thus the general 

components of V are

vx = vs  vy = vp sin c  vz = vp cos c

Since vs and vp are constant, the time derivatives of these components 

become

v
#

x = 0  v
#

y = vp cos c c
#
 vz = -vp sin c c

#

But f = c = 0� and c
#
= vs at the instant considered. Thus,

 vx = vs   vy = 0  vz = vp

 v
#

x = 0   v
#

y = vpvs   v
#

z = 0

which are the same results as those obtained previously.

Equations of Motion. Using Eqs. 21–25, we have

 �Mx = Ixv
#

x - (Iy - Iz)vy vz = I(0) - (I - 0)(0)vp

 Mx = 0 Ans.

 �My = Iyv
#

y - (Iz - Ix)vz vx = I(vpvs) - (0 - I)vpvs

 My = 2Ivpvs Ans.

 �Mz = Izv
#

z - (Ix - Iy)vx vy = 0(0) - (I - I)vs(0)

 Mz = 0 Ans.

X

Y

Z

x

y

z

(d)

Vs

Vp

c

f

Fig. 21–13
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The 10-kg flywheel (or thin disk) shown in Fig. 21–14a rotates (spins) 

about the shaft at a constant angular velocity of vs = 6 rad>s. At the 

same time, the shaft rotates (precessing) about the bearing at A with 

an angular velocity of vp = 3 rad>s. If A is a thrust bearing and B is a 

journal bearing, determine the components of force reaction at each 

of these supports due to the motion.

SOLUTION I
Free-Body Diagram. Fig. 21–14b. The origin of the x, y, z coordinate 

system is located at the center of mass G of the flywheel. Here we will 

let these coordinates have an angular velocity of � = Vp = 53k6  rad>s.

Although the wheel spins relative to these axes, the moments of inertia 

remain constant,* i.e.,

 Ix = Iz = 1
4(10 kg)(0.2 m)2 = 0.1 kg # m2

 Iy = 1
2(10 kg)(0.2 m)2 = 0.2 kg # m2

Kinematics. From the coincident inertial X, Y, Z frame of reference, 

Fig. 21–14c, the flywheel has an angular velocity of 

V = 56j + 3k6  rad>s, so that

vx = 0 vy = 6 rad>s  vz = 3 rad>s
The time derivative of V must be determined relative to the x, y, z 

axes. In this case both Vp and Vs do not change their magnitude or 

direction, and so

v
#

x = 0 v
#

y = 0  v
#

z = 0

Equations of Motion. Applying Eqs. 21–26 (� � V) yields

�Mx = Ixv
#

x - Iy �z vy + Iz �y vz

-Az(0.5) + Bz(0.5) = 0 - (0.2)(3)(6) + 0 = -3.6

�My = Iyv
#

y - Iz �x vz + Ix �z vx

0 = 0 - 0 + 0

�Mz = Izv
#

z - Ix �y vx + Iy �x vy

A x(0.5) - Bx(0.5) = 0 - 0 + 0

EXAMPLE   21.6

(b)

Bx

Ax

Ay

Az

Bz

10(9.81) N

z

0.5 m

y

x

A

B

0.5 m

G

Fig. 21–14

*This would not be true for the propeller in Example 21.5.

(a)

0.5 m

A

B

0.5 m

0.2 mG

vp � 3 rad/s

vs � 6 rad/s
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vp � 3 rad/s 

(c)

Z, z, z¿

X, x, x¿

Y, y, y¿

A

vs � 6 rad/s 

B

G
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Applying Eqs. 21–19, we have

 �FX = m(aG)X; Ax + Bx = 0

 �FY = m(aG)Y; Ay = -10(0.5)(3)2

 �FZ = m(aG)Z; Az + Bz - 10(9.81) = 0

Solving these equations, we obtain

Ax = 0 Ay = -45.0 N Az = 52.6 N Ans.

Bx = 0 Bz = 45.4 N Ans.

NOTE: If the precession Vp had not occurred, the z component of 

force at A and B would be equal to 49.05 N. In this case, however, the 

difference in these components is caused by the “gyroscopic moment” 

created whenever a spinning body precesses about another axis. We 

will study this effect in detail in the next section.

SOLUTION II
This example can also be solved using Euler’s equations of motion, 

Eqs. 21–25. In this case � = V = 56j + 3k6  rad>s, and the time

derivative (V
#
)xyz can be conveniently obtained with reference to the 

fixed X, Y, Z axes since V
# = (V

#
)xyz . This calculation can be performed 

by choosing x �, y �, z� axes to have an angular velocity of � � = Vp , 

Fig. 21–14c, so that

V
# = (V

#
)x�y�z� + Vp * V = 0 + 3k * (6j + 3k) = 5-18i6  rad>s2

v
#

x = -18 rad>s v
#

y = 0 v
#

z = 0

The moment equations then become

�Mx = Ixv
#

x - (Iy - Iz)vyvz

-Az(0.5) + Bz(0.5) = 0.1(-18) - (0.2 - 0.1)(6)(3) = -3.6

�My = Iyv
#

y - (Iz - Ix)vzvx

0 = 0 - 0

�Mz = Izv
#

z - (Ix - Iy)vxvy

A x(0.5) - Bx(0.5) = 0 - 0

The solution then proceeds as before.

Fig. 21–14
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21–45. If the shaft AB is rotating with a constant angular 

velocity of v = 30 rad>s, determine the X, Y, Z components 

of reaction at the thrust bearing A and journal bearing B at 

the instant shown. The disk has a weight of 15 lb. Neglect 

the weight of the shaft AB.

z

A

B

y

x

1.5 ft

1 ft

v � 30 rad/s

30�

0.5 ft

Prob. 21–45

21–46. The assembly is supported by journal bearings at A 

and B, which develop only y and z force reactions on the shaft. 

If the shaft is rotating in the direction shown at V = 52i6  rad>s, 

determine the reactions at the bearings when the assembly is 

in the position shown. Also, what is the shaft’s angular 

acceleration? The mass per unit length of each rod is 5 kg>m.

21–47. The assembly is supported by journal bearings at A 

and B, which develop only y and z force reactions on the 

shaft. If the shaft A is subjected to a couple moment 

M = 540i6  N # m, and at the instant shown the shaft has an 

angular velocity of V = 52i6  rad>s, determine the 

reactions at the bearings of the assembly at this instant. 

Also, what is the shaft’s angular acceleration? The mass per 

unit length of each rod is 5 kg>m.

1 m

2 m

1 m

A

x

y

B

z

v

Probs. 21–46/47

*21–40. Derive the scalar form of the rotational equation 

of motion about the x axis if � � V and the moments and 

products of inertia of the body are not constant with respect 

to time.

21–41. Derive the scalar form of the rotational equation 

of motion about the x axis if � � V and the moments and 

products of inertia of the body are constant with respect 

to time.

21–42. Derive the Euler equations of motion for � � V, 

i.e., Eqs. 21–26.

21–43. The 4-lb bar rests along the smooth corners of 

an  open box. At the instant shown, the box has a 

velocity v = 53j6 ft>s and an acceleration a = 5-6j6 ft>s2. 

Determine the x, y, z components of force which the corners 

exert on the bar.

z

y
x

2 ft

1 ft 2 ft

B

A

Prob. 21–43

*21–44. The uniform plate has a mass of m = 2 kg and is 

given a rotation of v = 4 rad>s about its bearings at A 

and B. If a = 0.2 m and c = 0.3 m, determine the vertical 

reactions at the instant shown. Use the x, y, z axes shown 

and note that Izx = -  amac

12
b a c2 - a2

c2 + a2
b .

x

A

B

c
ay

z

Prob. 21–44

PROBLEMS
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*21–48. The man sits on a swivel chair which is rotating 

with a constant angular velocity of 3 rad>s. He holds the 

uniform 5-lb rod AB horizontal. He suddenly gives it an 

angular acceleration of 2 rad>s2, measured relative to him, 

as shown. Determine the required force and moment 

components at the grip, A, necessary to do this. Establish 

axes at the rod’s center of mass G, with +z upward, and +y 

directed along the axis of the rod toward A.

3 ft 2 ft

AB

3 rad/s

2 rad/s2

Prob. 21–48

21–49. The rod assembly is supported by a ball-and-socket 

joint at C and a journal bearing at D, which develops only x 

and y force reactions. The rods have a mass of 0.75 kg>m. 

Determine the angular acceleration of the rods and the 

components of reaction at the supports at the instant 

v = 8 rad>s as shown.

v � 8 rad/s2 m

1 m

2 m

y
x

z

C

B

A

D

50 N � m

Prob. 21–49

21–50. The bent uniform rod ACD has a weight of 5 lb>ft 
and is supported at A by a pin and at B by a cord. If the 

vertical shaft rotates with a constant angular velocity 

v = 20 rad>s, determine the x, y, z components of force and 

moment developed at A and the tension in the cord.

1 ft

0.5 ft

1 ft

y
C

B

A

D

z

v

Prob. 21–50

21–51. The uniform hatch door, having a mass of 15 kg and 

a mass center at G, is supported in the horizontal plane by 

bearings at A and B. If a vertical force F = 300 N is applied 

to the door as shown, determine the components of reaction 

at the bearings and the angular acceleration of the door. 

The bearing at A will resist a component of force in the y 

direction, whereas the bearing at B will not. For the 

calculation, assume the door to be a thin plate and neglect 

the size of each bearing. The door is originally at rest.

y
30 mm

z

x

G

B

A

30 mm

100 mm
150 mm

150 mm

100 mm

200 mm
200 mm

F

Prob. 21–51
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*21–52. The 5-kg circular disk is mounted off center on a 

shaft which is supported by bearings at A and B. If the shaft 

is rotating at a constant rate of v = 10 rad>s, determine the 

vertical reactions at the bearings when the disk is in the 

position shown.

100 mm
20 mm

A B
G

100 mm
100 mm

v

Prob. 21–52

21–53. Two uniform rods, each having a weight of 10 lb, 

are pin connected to the edge of a rotating disk. If the disk 

has a constant angular velocity vD = 4 rad>s, determine 

the angle u made by each rod during the motion, and the 

components of the force and moment developed at 

the pin A. Suggestion: Use the x, y, z axes oriented as shown.

y2 ft

2 ft

x

z

A

G

B

1.75 ft

uu

vD � 4 rad/s

Prob. 21–53

21–54. The 10-kg disk turns around the shaft AB, while 

the shaft rotates about BC at a constant rate of vx = 5 rad>s. 

If the disk does not slip, determine the normal and frictional 

force it exerts on the ground. Neglect the mass of shaft AB.

x

0.4 m

y

z

2 m A

C

B

 vx � 5 rad/s

Prob. 21–54

21–55. The 20-kg disk is spinning on its axle at 

vs = 30 rad>s, while the forked rod is turning at 

v1 = 6 rad>s. Determine the x and z moment components 

the axle exerts on the disk during the motion.

x
O

y

200 mm

z

A

 vs � 30 rad/s

 v1 � 6 rad/s

Prob. 21–55
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*21–56. The 4-kg slender rod AB is pinned at A and held 

at B by a cord. The axle CD is supported at its ends by ball-

and-socket joints and is rotating with a constant angular 

velocity of 2 rad>s. Determine the tension developed in the 

cord and the magnitude of force developed at the pin A.

D

2 m

C

A

B

y

z 40

v

Prob. 21–56

21–57. The blades of a wind turbine spin about the shaft S 

with a constant angular speed of vs, while the frame precesses 

about the vertical axis with a constant angular speed of vp. 

Determine the x, y, and z components of moment that the 

shaft exerts on the blades as a function of u. Consider each 

blade as a slender rod of mass m and length l.

z

x

y

S
u

u

vs

vp

Prob. 21–57

21–58. The 15-lb cylinder is rotating about shaft AB with a 

constant angular speed v = 4 rad>s. If the supporting shaft 

at C, initially at rest, is given an angular acceleration 

aC = 12 rad>s2, determine the components of reaction at the 

bearings A and B. The bearing at A cannot support a force 

component along the x axis, whereas the bearing at B does.

x

z

y

1 ft

0.5 ft

1 ft

A

C

B

G

v

aC

Prob. 21–58

21–59. The thin rod has a mass of 0.8 kg and a total length 

of 150 mm. It is rotating about its midpoint at a constant 

rate u
#
 = 6 rad>s,  while the table to which its axle A is 

fastened is rotating at 2 rad>s. Determine the x, y, z moment 

components which the axle exerts on the rod when the rod 

is in any position u.

2 rad/s

z

x

y

A

u

u

Prob. 21–59
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*21.5 Gyroscopic Motion

In this section we will develop the equations defining the motion of a 

body (top) which is symmetrical with respect to an axis and rotating about 

a fixed point. These equations also apply to the motion of a particularly 

interesting device, the gyroscope.

The body’s motion will be analyzed using Euler angles f, u, c 

(phi,  theta, psi). To illustrate how they define the position of a body, 

consider the top shown in Fig. 21–15a. To define its final position,  

Fig. 21–15d, a second set of x, y, z axes is fixed in the top. Starting with the 

X, Y, Z and x, y, z axes in coincidence, Fig. 21–15a, the final position of the 

top can be determined using the following three steps:

 1. Rotate the top about the Z (or z) axis through an angle 

f (0 … f 6 2p), Fig. 21–15b.

 2. Rotate the top about the x axis through an angle u (0 … u … p), 

Fig. 21–15c.

 3. Rotate the top about the z axis through an angle c (0 … c 6 2p) 

to obtain the final position, Fig. 21–15d.

The sequence of these three angles, f, u, then c, must be maintained, since 

finite rotations are not vectors (see Fig. 20–1). Although this is the case, 

the differential rotations dF, dU, and dC are vectors, and thus the angular 

velocity V of the top can be expressed in terms of the time derivatives of 

the Euler angles. The angular-velocity components f
#
, u

#
, and c

#
 are known 

as the precession, nutation, and spin, respectively. 

Z, z

X, x

Y, yO

(a)

X

Y

x

y

Precession f

(b)

Z, z

O

f

f

f

.

.

Y

y

X
x

(c)

O

Z
z

u

u

u

f

f

.

Nutation u
.

Y

y

X x

(d)

O

Zz

u

u

f

f

c

c

c
.

Spin c
.

Fig. 21–15 
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Their positive directions are shown in Fig. 21–16. It is seen that these 

vectors are not all perpendicular to one another; however, V of the top 

can still be expressed in terms of these three components.

Since the body (top) is symmetric with respect to the z or spin axis, 

there is no need to attach the x, y, z axes to the top since the inertial 

properties of the top will remain constant with respect to this frame 

during the motion. Therefore � = Vp + Vn , Fig. 21–16. Hence, the 

angular velocity of the body is

 V = vx i + vy j + vz k

  = u
#
i + (f 

#
sin u)j + (f 

#
cos u + c

#
)k (21–27)

And the angular velocity of the axes is

 � = �x i + �y j + �z k

 = u
#
i + (f 

#
sin u)j + (f

#
 cos u)k (21–28)

Have the x, y, z axes represent principal axes of inertia for the top, and so 

the moments of inertia will be represented as Ixx = Iyy = I and Izz = Iz . 

Since � � V, Eqs. 21–26 are used to establish the rotational equations of 

motion. Substituting into these equations the respective angular-velocity 

components defined by Eqs. 21–27 and 21–28, their corresponding time 

derivatives, and the moment of inertia components, yields

 �Mx = I(u
$

- f
#
2 sin u cos u) + Izf

#
 sin u(f

#
 cos u + c

#
)

  �My = I(f
$
 sin u + 2f

#
u
#
 cos u) - Izu

#
(f

#
 cos u + c

#
)  (21–29)

 �Mz = Iz(c
$

+ f
$
 cos u - f

#
u
#
 sin u)

Each moment summation applies only at the fixed point O or the center 

of mass G of the body. Since the equations represent a coupled set of 

nonlinear second-order differential equations, in general a closed-form 

solution may not be obtained. Instead, the Euler angles f, u, and c may 

be obtained graphically as functions of time using numerical analysis and 

computer techniques.

A special case, however, does exist for which simplification of   

Eqs. 21–29 is possible. Commonly referred to as steady precession, it 

occurs when the nutation angle u, precession f
#
, and spin c

#
 all remain 

constant. Equations 21–29 then reduce to the form

 �Mx = -If
#
2 sin u cos u + Izf

#
 sin u(f

#
 cos u + c

#
)  (21–30)

  �My = 0 

 �Mz = 0

Y

y

X

x

Z
z

O

G

u

u

f

f

vs � c
.

vp � f
.

vn � u
.

Fig. 21–16 
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Equation 21–30 can be further simplified by noting that, from Eq. 21–27, 

vz = f 
#

cos u + c
#
, so that

�Mx = -If
#
2 sin u cos u + Izf

#
 (sin u)vz

or

 �Mx = f 
#

sin u(Izvz - If 
#

cos u)  (21–31)

It is interesting to note what effects the spin c
#
 has on the moment 

about the x axis. To show this, consider the spinning rotor in Fig. 21–17. 

Here u = 90�, in which case Eq. 21–30 reduces to the form

�Mx = Izf
#
c
#

or

 �Mx = Iz�yvz  (21–32)

z
G

y, Z

Y

X, x

W

O

rG

u � 90�

�y � f
.

vz � c
.

Fig. 21–17 

From the figure it can be seen that �y and Vz act along their respective 

positive axes and therefore are mutually perpendicular. Instinctively, one 

would expect the rotor to fall down under the influence of gravity! 

However, this is not the case at all, provided the product Iz�yvz is 

correctly chosen to counterbalance the moment �Mx = WrG of the 

rotor’s weight about O. This unusual phenomenon of rigid-body motion 

is often referred to as the gyroscopic effect.
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x

z, Y
HO

y, Z

�Mx
�y

X

O
Vz

Fig. 21–18 

Perhaps a more intriguing demonstration of the gyroscopic effect 

comes from studying the action of a gyroscope, frequently referred to as 

a gyro. A gyro is a rotor which spins at a very high rate about its axis of 

symmetry. This rate of spin is considerably greater than its precessional 

rate of rotation about the vertical axis. Hence, for all practical purposes, 

the angular momentum of the gyro can be assumed directed along its 

axis of spin. Thus, for the gyro rotor shown in Fig. 21–18, vz W �y , and 

the magnitude of the angular momentum about point O, as determined 

from Eqs. 21–11, reduces to the form HO = Izvz . Since both the magnitude 

and direction of HO are constant as observed from x, y, z, direct application 

of Eq. 21–22 yields

 �Mx = �y * HO  (21–33)

Using the right-hand rule applied to the cross product, it can be seen 

that �y always swings HO (or Vz) toward the sense of �Mx . In effect, the 

change in direction of the gyro’s angular momentum, dHO , is equivalent 

to the angular impulse caused by the gyro’s weight about O, i.e., 

dHO = �Mx dt, Eq. 21–20. Also, since HO = Izvz and �Mx , �y , and HO 

are mutually perpendicular, Eq. 21–33 reduces to Eq. 21–32.

When a gyro is mounted in gimbal rings, Fig. 21–19, it becomes free of 

external moments applied to its base. Thus, in theory, its angular 

momentum H will never precess but, instead, maintain its same fixed 

orientation along the axis of spin when the base is rotated. This type of 

gyroscope is called a free gyro and is useful as a gyrocompass when the 

spin axis of the gyro is directed north. In reality, the gimbal mechanism is 

never completely free of friction, so such a device is useful only for the 

local navigation of ships and aircraft. The gyroscopic effect is also useful 

as a means of stabilizing both the rolling motion of ships at sea and the 

trajectories of missiles and projectiles. Furthermore, this effect is of 

significant importance in the design of shafts and bearings for rotors 

which are subjected to forced precessions.

Gimbals

Bearings

Gyro

Fig. 21–19 

HO

W
O

Vp

The spinning of the gyro within the frame 
of this toy gyroscope produces angular 
momentum HO, which is changing direction 
as the frame precesses Vp about the 
vertical axis. The gyroscope will not fall 
down since the moment of its weight W 
about the support is balanced by the 
change in the direction of HO . 
(© R.C. Hibbeler)
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·

(a)

50 mm

O

G 60�

vs � 100 rad/s

vp � f

Fig. 21–20 

Z

X

Y

x

z

y
G 60�

(b)

0.05 m
OX

OZ

OY

4.905 N

EXAMPLE   21.7

The top shown in Fig. 21–20a has a mass of 0.5 kg and is precessing 

about the vertical axis at a constant angle of u = 60�. If it spins with 

an angular velocity vs = 100 rad>s, determine the precession Vp . 

Assume that the axial and transverse moments of inertia of the top 

are 0.45(10-3) kg # m2 and 1.20(10-3) kg # m2, respectively, measured 

with respect to the fixed point O.

SOLUTION
Equation 21–30 will be used for the solution since the motion is steady 
precession. As shown on the free-body diagram, Fig. 21–20b, the 

coordinate axes are established in the usual manner, that is, with the 

positive z axis in the direction of spin, the positive Z axis in the direction 

of precession, and the positive x axis in the direction of the moment 

�Mx (refer to Fig. 21–16). Thus,

 �Mx = -If
#
2 sin u cos u + Izf

#
 sin u(f

#
 cos u + c

#
)

 4.905 N(0.05 m) sin 60� = -[1.20(10-3) kg # m2 f
#
2] sin 60� cos 60�

 + [0.45(10-3) kg # m2]f
#
 sin 60�(f

#
 cos 60� + 100 rad>s)

or

 f
#
2 - 120.0f

#
+ 654.0 = 0 (1)

Solving this quadratic equation for the precession gives

 f
#
= 114 rad>s (high precession) Ans.

and

 f
#
= 5.72 rad>s (low precession) Ans.

NOTE: In reality, low precession of the top would generally be observed, 

since high precession would require a larger kinetic energy.
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EXAMPLE   21.8

The 1-kg disk shown in Fig. 21–21a spins about its axis with a constant 

angular velocity vD = 70 rad>s. The block at B has a mass of 2 kg, 

and by adjusting its position s one can change the precession of the 

disk about its supporting pivot at O while the shaft remains 

horizontal. Determine the position s that will enable the disk to have 

a constant precession vp = 0.5 rad>s about the pivot. Neglect the 

weight of the shaft.

200 mm

s

D

(a)

50 mm
O

B

vp � 0.5 rad/s

vD � 70 rad/s

(b)

0.2 m

u � 90�

s

B

R
9.81 N

19.62 Nz

Y

X, x

Z, y

O

Fig. 21–21 

SOLUTION
The free-body diagram of the assembly is shown in Fig. 21–21b. The 

origin for both the x, y, z and X, Y, Z coordinate systems is located at 

the fixed point O. In the conventional sense, the Z axis is chosen along 

the axis of precession, and the z axis is along the axis of spin, so that 

u = 90�. Since the precession is steady, Eq. 21–32 can be used for the 

solution.

 �Mx = Iz�yvz

Substituting the required data gives

(9.81 N) (0.2 m) - (19.62 N)s = 31
2 

(1 kg)(0.05 m)240.5 rad>s(-70 rad>s)

 s = 0.102 m = 102 mm Ans.



632  CHAPTER 21  THREE-DIMENSIONAL KINET ICS OF A RIG ID BODY

21

21.6 Torque-Free Motion

When the only external force acting on a body is caused by gravity, the 

general motion of the body is referred to as torque-free motion. This type 

of motion is characteristic of planets, artificial satellites, and projectiles—

provided air friction is neglected.

In order to describe the characteristics of this motion, the distribution 

of the body’s mass will be assumed axisymmetric. The satellite shown in 

Fig. 21–22 is an example of such a body, where the z axis represents an 

axis of symmetry. The origin of the x, y, z coordinates is located at the 

mass center G, such that Izz = Iz and Ixx = Iyy = I. Since gravity is the 

only external force present, the summation of moments about the mass 

center is zero. From Eq. 21–21, this requires the angular momentum of 

the body to be constant, i.e.,

HG = constant

At the instant considered, it will be assumed that the inertial frame of 

reference is oriented so that the positive Z axis is directed along HG and 

the y axis lies in the plane formed by the z and Z axes, Fig. 21–22. The 

Euler angle formed between Z and z is u, and therefore, with this choice 

of axes the angular momentum can be expressed as

HG = HG sin u j + HG cos u k

Furthermore, using Eqs. 21–11, we have

HG = Ivx i + Ivy j + Izvz k

Equating the respective i, j, and k components of the above two  

equations yields

x

G

y
Z

z
HG

u

V

Fig. 21–22 
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 vx = 0 vy =
HG sin u

I
 vz =

HG cos u

Iz
 (21–34)

or

 V =
HG sin u

I
 j +

HG cos u

Iz
 k  (21–35)

In a similar manner, equating the respective i, j, k components of  

Eq. 21–27 to those of Eq. 21–34, we obtain

 u
#
= 0

 f
#
 sin u =

HG sin u

I

 f 
#

cos u + c
#
=

HG cos u

Iz

Solving, we get

 

 u = constant

 f
#
=

HG

I

 c
#
=

I - Iz

I Iz
 HG cos u

 (21–36)

Thus, for torque-free motion of an axisymmetrical body, the angle u 

formed between the angular-momentum vector and the spin of the body 

remains constant. Furthermore, the angular momentum HG , precession f
#
, 

and spin c
#
 for the body remain constant at all times during the motion.

Eliminating HG from the second and third of Eqs. 21–36 yields the 

following relation between the spin and precession:

 c
#
=

I - Iz

Iz
 f 

#
cos u  (21–37)
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These two components of angular motion can be studied by using the 

body and space cone models introduced in Sec. 20.1. The space cone 

defining the precession is fixed from rotating, since the precession has a 

fixed direction, while the outer surface of the body cone rolls on the 

space cone’s outer surface. Try to imagine this motion in Fig. 21–23a. The 

interior angle of each cone is chosen such that the resultant angular 

velocity of the body is directed along the line of contact of the two cones. 

This line of contact represents the instantaneous axis of rotation for the 

body cone, and hence the angular velocity of both the body cone and  

the body must be directed along this line. Since the spin is a function of 

the moments of inertia I and Iz of the body, Eq. 21–36, the cone model in 

Fig. 21–23a is satisfactory for describing the motion, provided I 7 Iz . 

Torque-free motion which meets these requirements is called regular 
precession. If I 6 Iz , the spin is negative and the precession positive. This 

motion is represented by the satellite motion shown in Fig. 21–23b 

(I 6 Iz). The cone model can again be used to represent the motion; 

however, to preserve the correct vector addition of spin and precession 

to obtain the angular velocity V, the inside surface of the body cone must 

roll on the outside surface of the (fixed) space cone. This motion is 

referred to as retrograde precession.

ZAxis of
precession

Instantaneous
axis of rotation

z

Body cone

Axis of
spin

Space cone

G

V

c

f

(a)

.

.

I � Iz

G

Z

Body cone

Axis of
precession

Space
cone Axis of

spin

(b)

V

zf
.

c
.

I � Iz

Instantaneous
axis of rotation

Fig. 21–23 

Satellites are often given a spin before they are launched. If their angular momentum 
is not collinear with the axis of spin, they will exhibit precession. In the photo on the 
left, regular precession will occur since I 7 Iz , and in the photo on the right, retrograde 
precession will occur since I 6 Iz .

(© R.C. Hibbeler) (© R.C. Hibbeler)
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EXAMPLE   21.9

The motion of a football is observed using a slow-motion projector. 

From the film, the spin of the football is seen to be directed 30° from 

the horizontal, as shown in Fig. 21–24a. Also, the football is precessing 

about the vertical axis at a rate f
#
= 3 rad>s. If the ratio of the axial to 

transverse moments of inertia of the football is 1
3, measured with 

respect to the center of mass, determine the magnitude of the football’s 

spin and its angular velocity. Neglect the effect of air resistance.

30�

(a)

f � 3 rad/s
.

c
.

(b)

Z

z

u � 60�

f
.

c
.

SOLUTION
Since the weight of the football is the only force acting, the motion is 

torque-free. In the conventional sense, if the z axis is established 

along the axis of spin and the Z axis along the precession axis, as 

shown in Fig. 21–24b, then the angle u = 60�. Applying Eq. 21–37, the 

spin is

 c
#
=

I - Iz

Iz
 f 

#
cos u =

I - 1
3 I

1
3 I

 (3) cos 60�

     = 3 rad>s Ans.

Using Eqs. 21–34, where HG = f
#
I (Eq. 21–36), we have

  vx = 0

  vy =
HG sin u

I
=

3I sin 60�

I
= 2.60 rad>s

  vz =
HG cos u

Iz
=

3I cos 60�
1
3 I

= 4.50 rad>s
Thus,

  v = 2(vx)
2 + (vy)

2 + (vz)
2

  = 2(0)2 + (2.60)2 + (4.50)2

  = 5.20 rad>s  Ans.

Fig. 21–24 
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*21–60. Show that the angular velocity of a body, in terms 

of Euler angles f, u, and c, can be expressed as 

v = (f
#
 sin u sin c + u

#
 cos c)i + (f

#
 sin u cos c - u

#
 sin c)j +

(f
#
 cos u + c

#
)k, where i, j, and k are directed along the x, y, z 

axes as shown in Fig. 21–15d.

21–61. A thin rod is initially coincident with the Z axis 

when it is given three rotations defined by the Euler angles 

f = 30�, u = 45�, and c = 60�. If these rotations are given 

in the order stated, determine the coordinate direction 

angles a, b, g of the axis of the rod with respect to the X, Y, 

and Z axes. Are these directions the same for any order of 

the rotations? Why?

21–62. The gyroscope consists of a uniform 450-g disk D 

which is attached to the axle AB of negligible mass. The 

supporting frame has a mass of 180 g and a center of mass 

at G. If the disk is rotating about the axle at vD = 90 rad>s, 

determine the constant angular velocity vp  at which the 

frame precesses about the pivot point O. The frame moves 

in the horizontal plane.

25 mm

35 mm

25 mm
20 mm 80 mm

A B G

D

O

vp

vD

Prob. 21–62

21–63. The toy gyroscope consists of a rotor R which is 

attached to the frame of negligible mass. If it is observed 

that the frame is precessing about the pivot point O at 

vp = 2 rad>s, determine the angular velocity vR of the 

rotor. The stem OA moves in the horizontal plane. The rotor 

has a mass of 200 g and a radius of gyration kOA = 20 mm 

about OA.

30 mm

O

A

R

vR

vp

Prob. 21–63

*21–64. The top consists of a thin disk that has a weight  

of 8 lb and a radius of 0.3 ft. The rod has a negligible mass 

and a length of 0.5 ft. If the top is spinning with an angular 

velocity vs = 300 rad>s, determine the steady-state 

precessional angular velocity vp  of the rod when u = 40�.

21–65. Solve Prob. 21–64 when u = 90�.

0.3 ft
0.5 ft

u

vsvp

Probs. 21–64/65

PROBLEMS
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21–66. The propeller on a single-engine airplane has a 

mass of 15 kg and a centroidal radius of gyration of 0.3 m 

computed about the axis of spin. When viewed from the 

front of the airplane, the propeller is turning clockwise at 

350 rad>s about the spin axis. If the airplane enters a vertical 

curve having a radius of 80 m and is traveling at 200 km>h, 

determine the gyroscopic bending moment which the 

propeller exerts on the bearings of the engine when the 

airplane is in its lowest position.

p � 80 m

Prob. 21–66

21–67. A wheel of mass m and radius r rolls with constant 

spin V about a circular path having a radius a. If the angle of 

inclination is u, determine the rate of precession. Treat the 

wheel as a thin ring. No slipping occurs.

ar

u

v

.
f

Prob. 21–67

*21–68. The conical top has a mass of 0.8 kg, and the 

moments of inertia are Ix = Iy = 3.5(10-3) kg # m2 and 

Iz = 0.8(10-3) kg # m2. If it spins freely in the ball-and socket 

joint at A with an angular velocity vs = 750 rad>s, compute 

the precession of the top about the axis of the shaft AB.

30�

yB

x

z

100 mm

A

vs

G

Prob. 21–68

21–69. The top has a mass of 90 g, a center of mass at G, 

and a radius of gyration k = 18 mm about its axis of 

symmetry. About any transverse axis acting through point O 

the radius of gyration is kt = 35 mm. If the top is connected 

to a ball-and-socket joint at O and the precession is 

vp = 0.5 rad>s, determine the spin Vs.

Vp

Vs

60 mm

G

O

45�

Prob. 21–69
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21–70. The 1-lb top has a center of gravity at point G. If it 

spins about its axis of symmetry and precesses about the 

vertical axis at constant rates of vs = 60 rad>s and 

vp = 10 rad>s, respectively, determine the steady state 

angle u. The radius of gyration of the top about the z axis is 

kz = 1 in., and about the x and y axes it is kx = ky = 4 in.

y
x

O

z

3 in.

vp � 10 rad/s
u

G

vs � 60 rad/s

Prob. 21–70

21–71. The space capsule has a mass of 2 Mg, center of 

mass at G, and radii of gyration about its axis of symmetry  

(z axis) and its transverse axes (x or y axis) of kz = 2.75 m 

and kx = ky = 5.5 m, respectively. If the capsule has the 

angular velocity shown, determine its precession f
#
 and  

spin c
#
. Indicate whether the precession is regular or retrograde. 

Also, draw the space cone and body cone for the motion.

y

x

G

z

30�

v � 150 rad/s

Prob. 21–71

*21–72. The 0.25 kg football is spinning at vz = 15 rad>s 

as shown. If u = 40�, determine the precession about the 

z  axis. The radius of gyration about the spin axis is 

kz = 0.042 m, and about a transverse axis is ky = 0.13 m.

Z

G

z

 vz � 15 rad/s

Prob. 21–72

21–73. The projectile shown is subjected to torque-free 

motion. The transverse and axial moments of inertia are I 

and Iz, respectively. If u represents the angle between the 

precessional axis Z and the axis of symmetry z, and b is the 

angle between the angular velocity V and the z axis, show 

that b and u are related by the equation tan u = (I>Iz ) tan b.

G

Zy

x z
u

v

b

Prob. 21–73

21–74. The radius of gyration about an axis passing 

through the axis of symmetry of the 1.6-Mg space capsule is 

kz = 1.2 m and about any transverse axis passing through 

the center of mass G, kt = 1.8 m. If the capsule has a known 

steady-state precession of two revolutions per hour about 

the Z axis, determine the rate of spin about the z axis.

G z

Z

20�

Prob. 21–74
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21–75. The rocket has a mass of 4 Mg and radii of gyration  

kz = 0.85 m and kx = ky = 2.3 m. It is initially spinning 

about the z axis at vz = 0.05 rad>s when a meteoroid M 

strikes it at A and creates an impulse I = 5300i6  N # s. 

Determine the axis of precession after the impact.

G A

M

z

x
y

3 m

vz

Prob. 21–75

*21–76. The football has a mass of 450 g and radii of gyration 

about its axis of symmetry (z axis) and its transverse axes (x or 

y axis) of kz = 30 mm and kx = ky = 50 mm, respectively. If 

the football has an angular momentum of HG = 0.02 kg # m2>s,  
determine its precession f

#
 and spin c

#
. Also, find the angle b 

that the angular velocity vector makes with the z axis.

z

y

x

G

45�

V

B

HG � 0.02 kg � m2/s

Prob. 21–76

21–77. The satellite has a mass of 1.8 Mg, and about axes 

passing through the mass center G the axial and transverse 

radii of gyration are kz = 0.8 m and kt = 1.2 m, respectively. 

If it is spinning at vs = 6 rad>s when it is launched, 

determine its angular momentum. Precession occurs about 

the Z axis.

5�

vs

z

G

Z

Prob. 21–77

21–78. The radius of gyration about an axis passing 

through the axis of symmetry of the 1.2-Mg satellite is 

kz = 1.4 m, and about any transverse axis passing through 

the center of mass G, kt = 2.20 m. If the satellite has a 

known spin of 2700 rev>h about the z axis, determine the 

steady-state precession about the z axis.

15�

z

Z

G

Prob. 21–78
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CHAPTER REVIEW

Moments and Products of Inertia

A body has six components of inertia for 

any specified x, y, z axes. Three of these 

are moments of inertia about each of the 

axes, Ixx , Iyy , Izz , and three are products of 

inertia, each defined from two orthogonal 

planes, Ixy , Iyz , Ixz . If either one or both of 

these planes are planes of symmetry, then 

the product of inertia with respect to 

these planes will be zero.

The moments and products of inertia can 

be determined by direct integration or by 

using tabulated values. If these quantities 

are to be determined with respect to axes 

or planes that do not pass through the 

mass center, then parallel-axis and 

parallel-plane theorems must be used.

Provided the six components of inertia 

are known, then the moment of inertia 

about any axis can be determined using 

the inertia transformation equation.

 Ixx = Lm
rx

2 dm = Lm
(y2 + z2) dm   Ixy = Iyx = Lm

xy dm

 Iyy = Lm
ry

2 dm = Lm
(x2 + z2) dm   Iyz = Izy = Lm

yz dm

 Izz = Lm
rz

2 dm = Lm
(x2 + y2) dm   Ixz = Izx = Lm

xz dm

IOa = Ixxux
2 + Iyyuy

2 + Izzuz
2 - 2Ixyuxuy - 2Iyzuyuz - 2Izxuzux

Principal Moments of Inertia

At any point on or off the body, the x, y, z 

axes can be oriented so that the products 

of inertia will be zero. The resulting 

moments of inertia are called the principal 

moments of inertia. In general, one will be 

a maximum and the other a minimum. 

£ Ix 0 0

0 Iy 0

0 0 Iz

≥
Principle of Impulse and Momentum

The angular momentum for a body can be 

determined about any arbitrary point A.

Once the linear and angular momentum 

for the body have been formulated, then 

the principle of impulse and momentum 

can be used to solve problems that 

involve force, velocity, and time. 

m(vG)1 + � L
t2

t1

F dt = m(vG)2

HO = Lm
RO * (V * RO) dm 

Fixed Point O

HG = Lm
RG * (V * RG) dm 

Center of Mass 

HA = RG>A * mvG + HG 

Arbitrary Point 

(HO)1 + � L
t2

t1

MO dt = (HO)2

where 

 Hx = Ixxvx - Ixyvy - Ixzvz

 Hy = - Iyxvx + Iyyvy - Iyzvz

 Hz = - Izxvx - Izyvy + Izzvz
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Principle of Work and Energy

The kinetic energy for a body is usually 

determined relative to a fixed point or the 

body’s mass center.

T = 1
2 Ixvx

2 + 1
2 Iyvy

2 + 1
2 Izvz

2  T = 1
2 mvG

2 + 1
2 Ixvx

2 + 1
2 Iyvy

2 + 1
2 Izvz

2

Fixed Point Center of Mass 
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These formulations can be used with the 

principle of work and energy to solve 

problems that involve force, velocity, and 

displacement. 

T1 + �U1 - 2 = T2

Equations of Motion

There are three scalar equations of 

translational motion for a rigid body that 

moves in three dimensions.

The three scalar equations of rotational 

motion depend upon the motion of the x, 

y, z reference. Most often, these axes are 

oriented so that they are principal axes of 

inertia. If the axes are fixed in and move 

with the body so that � = V, then the 

equations are referred to as the Euler 

equations of motion.

A free-body diagram should always 

accompany the application of the 

equations of motion. 

 �Fx = m(aG)x 

 �Fy = m(aG)y

 �Fz = m(aG)z

 �Mx = Ixv
#

x - (Iy - Iz)vyvz

 �My = Iyv
#

y - (Iz - Ix)vzvx

 �Mz = Izv
#

z - (Ix - Iy)vxvy

� = V

 �Mx = Ixv
#

x - Iy�zvy + Iz�yvz

 �My = Iyv
#

y - Iz�xvz + Ix�zvx

 �Mz = Izv
#

z - Ix�yvx + Iy�xvy

� � V

Torque-Free Motion

A body that is only subjected to a 

gravitational force will have no moments 

on it about its mass center, and so the 

motion is described as torque-free motion. 

The angular momentum for the body 

about its mass center will remain constant. 

This causes the body to have both a spin 

and a precession. The motion depends 

upon the magnitude of the moment of 

inertia of a symmetric body about the spin 

axis, Iz , versus that about a perpendicular 

axis, I. 

Gyroscopic Motion

The angular motion of a gyroscope is 

best described using the three Euler 

angles f, u, and c. The angular velocity 

components are called the precession f
#
, 

the nutation u
#
, and the spin c

#
.

If u
#
 =  0 and f

#
 and c

#
 are constant, then the 

motion is referred to as steady precession.

It is the spin of a gyro rotor that is 

responsible for holding a rotor from falling 

downward, and instead causing it to precess 

about a vertical axis. This phenomenon is 

called the gyroscopic effect.

Y

y

f
u

 ·
vp � f 

 ·
vn � u 

 ·
vs � c

X
x

Zz

O

G

f

u

�Mx = - If
#
2 sin u cos u + Izf

#
 sin u(f

#
 cos u + c

#
)

 �My = 0, �Mz = 0

  u = constant

  f
#
=

HG

I

 c
#
=

I - Iz

I Iz
 HG cos u

PROBLEMS2121



The analysis of vibrations plays an important role in the study of the behavior 
of structures subjected to earthquakes.

Chapter 22

(© Daseaford/Fotolia)



Vibrations

CHAPTER OBJECTIVES

■ To discuss undamped one-degree-of-freedom vibration of a rigid 
body using the equation of motion and energy methods.

■ To study the analysis of undamped forced vibration and viscous 
damped forced vibration.

*22.1 Undamped Free Vibration

A vibration is the oscillating motion of a body or system of connected 

bodies displaced from a position of equilibrium. In general, there are two 

types of vibration, free and forced. Free vibration occurs when the motion 

is maintained by gravitational or elastic restoring forces, such as the 

swinging motion of a pendulum or the vibration of an elastic rod. Forced 
vibration is caused by an external periodic or intermittent force applied 

to the system. Both of these types of vibration can either be damped or 

undamped. Undamped vibrations exclude frictional effects in the analysis. 

Since in reality both internal and external frictional forces are present, the 

motion of all vibrating bodies is actually damped.
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The simplest type of vibrating motion is undamped free vibration, 

represented by the block and spring model shown in Fig. 22–1a. 

Vibrating motion occurs when the block is released from a displaced 

position x so that the spring pulls on the block. The block will attain  

a velocity such that it will proceed to move out of equilibrium when 

x = 0, and provided the supporting surface is smooth, the block will 

oscillate back and forth.

The time-dependent path of motion of the block can be determined by 

applying the equation of motion to the block when it is in the displaced 

position x. The free-body diagram is shown in Fig. 22–1b. The elastic 

restoring force F = kx is always directed toward the equilibrium position, 

whereas the acceleration a is assumed to act in the direction of positive 
displacement. Since a = d 2x>dt 2 = x

$
, we have

S+ �Fx = max ; -kx = mx
$

Note that the acceleration is proportional to the block’s displacement. 

Motion described in this manner is called simple harmonic motion. 

Rearranging the terms into a “standard form” gives

 x
$ + vn

2 x = 0 (22–1)

The constant vn, generally reported in rad>s, is called the natural 
frequency, and in this case

 vn = A
k
m

 (22–2)

Equation 22–1 can also be obtained by considering the block to be 

suspended so that the displacement y is measured from the block’s 

equilibrium position, Fig. 22–2a. When the block is in equilibrium, the 

spring exerts an upward force of F = W = mg on the block. Hence, when 

the block is displaced a distance y downward from this position, the 

magnitude of the spring force is F = W + ky, Fig. 22–2b. Applying the 

equation of motion gives

+ T �Fy = may ; -W - ky + W = my
$

or

 y
$ + vn

2 y = 0

which is the same form as Eq. 22–1 and vn is defined by Eq. 22–2.

Equilibrium
position

x

(a)

k

F � kx

(b)

W � mg

NB

Fig. 22–1 

Equilibrium
position

y

(a)

k

F � W � ky

W

(b)

 Fig. 22–2 



22

Equation 22–1 is a homogeneous, second-order, linear, differential 

equation with constant coefficients. It can be shown, using the methods 

of differential equations, that the general solution is

 x = A sin vnt + B cos vnt  (22–3)

Here A and B represent two constants of integration. The block’s velocity 

and acceleration are determined by taking successive time derivatives, 

which yields

  v = x
# = Avn cos vnt - Bvn sin vnt  (22–4)

  a = x
$ = -Avn  

2 sin vnt - Bvn  

2 cos vnt (22–5)

When Eqs. 22–3 and 22–5 are substituted into Eq. 22–1, the differential 

equation will be satisfied, showing that Eq. 22–3 is indeed the solution to 

Eq. 22–1.

The integration constants in Eq. 22–3 are generally determined from 

the initial conditions of the problem. For example, suppose that the block 

in Fig. 22–1a has been displaced a distance x1 to the right from its 

equilibrium position and given an initial (positive) velocity v1 directed  

to the right. Substituting x = x1 when t = 0 into Eq. 22–3 yields B = x1. 

And since v = v1 when t = 0, using Eq. 22–4 we obtain A = v1>vn . If 

these values are substituted into Eq. 22–3, the equation describing the 

motion becomes

 x =
v1

vn
 sin vnt + x1 cos vnt (22–6)

Equation 22–3 may also be expressed in terms of simple sinusoidal 

motion. To show this, let

 A = C cos f (22–7)

and

 B = C sin f (22–8)

where C and f are new constants to be determined in place of A and B. 

Substituting into Eq. 22–3 yields

x = C cos f sin vnt + C sin f cos vnt

And since sin(u + f) = sin u cos f + cos u sin f, then

 x = C sin(vnt + f)  (22–9)

If this equation is plotted on an x versus vnt axis, the graph shown in 

Fig. 22–3 is obtained. The maximum displacement of the block from its 

 22.1 UNDAMPED FREE VIBRATION 645
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equilibrium position is defined as the amplitude of vibration. From either 

the figure or Eq. 22–9 the amplitude is C. The angle f is called the phase 
angle since it represents the amount by which the curve is displaced from 

the origin when t = 0. We can relate these two constants to A and B 

using Eqs. 22–7 and 22–8. Squaring and adding these two equations, the 

amplitude becomes

 C = 2A2 + B2 (22–10)

If Eq. 22–8 is divided by Eq. 22–7, the phase angle is then

 f = tan-1 
B

A
 (22–11)

Note that the sine curve, Eq. 22–9, completes one cycle in time 

t = t (tau) when vnt = 2p, or

 t =
2p

vn
 (22–12)

This time interval is called a period, Fig. 22–3. Using Eq. 22–2, the period 

can also be represented as

 t = 2p A
m

k
 (22–13)

Finally, the frequency f is defined as the number of cycles completed per 

unit of time, which is the reciprocal of the period; that is,

 f =
1

t
=

vn

2p
 (22–14)

or

 f =
1

2p
 A

k
m

 (22–15)

The frequency is expressed in cycles>s. This ratio of units is called a hertz 

(Hz), where 1 Hz = 1 cycle>s = 2p rad>s.

When a body or system of connected bodies is given an initial 

displacement from its equilibrium position and released, it will vibrate 

with the natural frequency, vn . Provided the system has a single degree of 

freedom, that is, it requires only one coordinate to specify completely the 

position of the system at any time, then the vibrating motion will have 

the same characteristics as the simple harmonic motion of the block and 

spring just presented. Consequently, the motion is described by a 

differential equation of the same “standard form” as Eq. 22–1, i.e.,

 x
$ + vn  

2x = 0  (22–16)

Hence, if the natural frequency vn is known, the period of vibration t, 

frequency f, and other vibrating characteristics can be established using 

Eqs. 22–3 through 22–15.

C sin f
C

x

C

O

Period of time (t)

1 cycle 2p � vnt

vnt

x � C sin (vnt � f)

f

Fig. 22–3 
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Important Points

  Free vibration occurs when the motion is maintained by 

gravitational or elastic restoring forces.

  The amplitude is the maximum displacement of the body.

  The period is the time required to complete one cycle.

  The frequency is the number of cycles completed per unit of time, 

where 1 Hz = 1 cycle>s.

  Only one position coordinate is needed to describe the location 

of a one-degree-of-freedom system.

Procedure for Analysis

As in the case of the block and spring, the natural frequency vn of a 

body or system of connected bodies having a single degree of 

freedom can be determined using the following procedure:

Free-Body Diagram.
  Draw the free-body diagram of the body when the body is 

displaced a small amount from its equilibrium position.

  Locate the body with respect to its equilibrium position by using 

an appropriate inertial coordinate q. The acceleration of the 

body’s mass center aG or the body’s angular acceleration A should 

have an assumed sense of direction which is in the positive 
direction of the position coordinate.

  If the rotational equation of motion �MP = �(mk)P is to be used, 

then it may be beneficial to also draw the kinetic diagram since it 

graphically accounts for the components m(aG)x , m(aG)y , and IGA, 

and thereby makes it convenient for visualizing the terms needed 

in the moment sum �(mk)P .

Equation of Motion.
  Apply the equation of motion to relate the elastic or gravitational 

restoring forces and couple moments acting on the body to the 

body’s accelerated motion.

Kinematics.
  Using kinematics, express the body’s accelerated motion in terms 

of the second time derivative of the position coordinate, q
$
.

  Substitute the result into the equation of motion and determine 

vn by rearranging the terms so that the resulting equation is in 

the “standard form,” q
$ + vn  

2q = 0.
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Determine the period of oscillation for the simple pendulum shown in 

Fig. 22–4a. The bob has a mass m and is attached to a cord of length l. 
Neglect the size of the bob.

SOLUTION
Free-Body Diagram. Motion of the system will be related to the 

position coordinate (q =) u, Fig. 22–4b. When the bob is displaced by a 

small angle u, the restoring force acting on the bob is created by the 

tangential component of its weight, mg sin u. Furthermore, at acts in the 

direction of increasing s (or u).

Equation of Motion. Applying the equation of motion in the 

tangential direction, since it involves the restoring force, yields

+Q�Ft = mat ; -mg sin u = mat (1)

Kinematics. at = d 2s>dt 2 = s
$
. Furthermore, s can be related to u by 

the equation s = lu, so that at = lu
$
. Hence, Eq. 1 reduces to

 u
$

+
g

l
 sin u = 0 (2)

The solution of this equation involves the use of an elliptic integral. 

For small displacements, however, sin u � u, in which case

 u
$

+
g

l
 u = 0 (3)

Comparing this equation with Eq. 22–16 (x
$ + vn  

2x = 0), it is seen that 

vn = 1g>l. From Eq. 22–12, the period of time required for the bob to 

make one complete swing is therefore

 t =
2p

vn
= 2pA

l
g

 Ans.

This interesting result, originally discovered by Galileo Galilei 

through experiment, indicates that the period depends only on the 

length of the cord and not on the mass of the pendulum bob or the 

angle u.

NOTE: The solution of Eq. 3 is given by Eq. 22–3, where vn = 1g>l 
and u is substituted for x. Like the block and spring, the constants A 

and B in this problem can be determined if, for example, one knows 

the displacement and velocity of the bob at a given instant.

EXAMPLE  22.1

s

l

(a)

u

T

W � mg

n

t
an at

(b)

u

Fig. 22–4 
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The 10-kg rectangular plate shown in Fig. 22–5a is suspended at its 

center from a rod having a torsional stiffness k = 1.5 N # m>rad. 

Determine the natural period of vibration of the plate when it is given a 

small angular displacement u in the plane of the plate.

EXAMPLE  22.2

(a)

a � 0.2 m
b � 0.3 m

O

u

O

T � W

M � ku

W

(b)

Fig. 22–5 

SOLUTION
Free-Body Diagram. Fig. 22–5b. Since the plate is displaced in its 

own plane, the torsional restoring moment created by the rod is M = ku. 

This moment acts in the direction opposite to the angular displacement u. 

The angular acceleration u
$

 acts in the direction of positive u.

Equation of Motion.

�MO = IOa; -ku = IOu
$

or

u
$

+
k

IO
 u = 0

Since this equation is in the “standard form,” the natural frequency is 

vn = 1k>IO.

From the table on the inside back cover, the moment of inertia of 

the plate about an axis coincident with the rod is IO = 1
12 m(a2 + b2). 

Hence,

IO =
1

12
 (10 kg)3(0.2 m)2 + (0.3 m)24 = 0.1083 kg # m2

The natural period of vibration is therefore,

 t =
2p

vn
= 2pA

IO

k
= 2pA

0.1083

1.5
= 1.69 s Ans.

 22.1 UNDAMPED FREE VIBRATION 649
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The bent rod shown in Fig. 22–6a has a negligible mass and supports a 

5-kg collar at its end. If the rod is in the equilibrium position shown, 

determine the natural period of vibration for the system.

EXAMPLE  22.3

(a)
k � 400 N/m

200 mm

B

A

C
5 kg

100 mm

�

(b)

B

x

0.2 m

0.1 m

y

By

Bx

Fs � kx � kxst

49.05 N

0.2 m

5ay

u

u

u

(c)

0.2 m

B

x � 0.1u

y � 0.2u

0.1 m

u

u

Fig. 22–6 

SOLUTION
Free-Body and Kinetic Diagrams. Fig. 22–6b. Here the rod is 

displaced by a small angle u from the equilibrium position. Since  

the spring is subjected to an initial compression of xst for equilibrium, 

then when the displacement x 7 xst the spring exerts a force of 

Fs = kx - kxst on the rod. To obtain the “standard form,” Eq. 22–16, 5ay 

must act upward, which is in accordance with positive u displacement.

Equation of Motion. Moments will be summed about point B to 

eliminate the unknown reaction at this point. Since u is small,

a+ �MB = �(mk)B;

kx(0.1 m) - kxst(0.1 m) + 49.05 N(0.2 m) = -(5 kg)ay (0.2 m)

The second term on the left side, -kxst(0.1 m), represents the moment 

created by the spring force which is necessary to hold the collar in 

equilibrium, i.e., at x = 0. Since this moment is equal and opposite to 

the moment 49.05 N(0.2 m) created by the weight of the collar, these 

two terms cancel in the above equation, so that

 kx(0.1) = -5ay(0.2) (1)

Kinematics. The deformation of the spring and the position of the 

collar can be related to the angle u, Fig. 22–6c. Since u is small, 

x = (0.1 m)u and y = (0.2 m)u. Therefore, ay = y
$ = 0.2u

$
. Substituting 

into Eq. 1 yields

400(0.1u) 0.1 = -5(0.2u
$
)0.2

Rewriting this equation in the “standard form” gives

u
$

+ 20u = 0

Compared with x
$ + vn  

2x = 0 (Eq. 22–16), we have

vn  

2 = 20 vn = 4.47 rad>s
The natural period of vibration is therefore

 t =
2p

vn
=

2p

4.47
= 1.40 s Ans.
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A 10-lb block is suspended from a cord that passes over a 15-lb disk, 

as shown in Fig. 22–7a. The spring has a stiffness k = 200 lb>ft. 
Determine the natural period of vibration for the system.

SOLUTION
Free-Body and Kinetic Diagrams. Fig. 22–7b. The system consists 

of the disk, which undergoes a rotation defined by the angle u, and the 

block, which translates by an amount s. The vector IO U
$

 acts in 

the direction of positive u, and consequently mB ab acts downward in the 

direction of positive s.

Equation of Motion. Summing moments about point O to eliminate 

the reactions Ox and Oy , realizing that IO = 1
2 mr 2, yields

a+ �MO = �(mk)O;

10 lb(0.75 ft) - Fs(0.75 ft)

=
1

2
 a 15 lb

32.2 ft>s2
b (0.75 ft)2 u

$
+ a 10 lb

32.2 ft>s2
ba

b
(0.75 ft) (1)

Kinematics. As shown on the kinematic diagram in Fig. 22–7c, a 

small positive displacement u of the disk causes the block to lower by 

an amount s = 0.75u; hence, a
b
= s

$ = 0.75u
$
. When u = 0�, the spring 

force required for equilibrium of the disk is 10 lb, acting to the right. 

For position u, the spring force is Fs = (200 lb>ft)(0.75u ft) + 10 lb. 

Substituting these results into Eq. 1 and simplifying yields

u
$

+ 368u = 0

Hence,

vn  

2 = 368      vn = 19.18 rad>s
Therefore, the natural period of vibration is

 t =
2p

vn
=

2p

19.18
= 0.328 s Ans.

EXAMPLE   22.4

k � 200 lb/ft

0.75 ft

(a)

O

=

(b)

Fs

s

0.75 ft O Ox

Oy

15 lb

10 lb

0.75 ft O

mBab

uu

IO ü

s � 0.75 u

0.75 ft

0.75 u

(c)

 u

 u

Fig. 22–7 
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22–1. A spring is stretched 175 mm by an 8-kg block. If the 

block is displaced 100 mm downward from its equilibrium 

position and given a downward velocity of 1.50 m>s, 
determine the differential equation which describes the 

motion. Assume that positive displacement is downward. 

Also, determine the position of the block when t = 0.22 s.

22–2. A spring has a stiffness of 800 N>m. If a 2-kg block 

is attached to the spring, pushed 50 mm above its equilibrium 

position, and released from rest, determine the equation 

that describes the block’s motion. Assume that positive 

displacement is downward.

22–3. A spring is stretched 200 mm by a 15-kg block. If the 

block is displaced 100 mm downward from its equilibrium 

position and given a downward velocity of 0.75 m>s, 

determine the equation which describes the motion. What is 

the phase angle? Assume that positive displacement is 

downward.

*22–4. When a 20-lb weight is suspended from a spring, 

the spring is stretched a distance of 4 in. Determine the 

natural frequency and the period of vibration for a 10-lb 

weight attached to the same spring.

22–5. When a 3-kg block is suspended from a spring, the 

spring is stretched a distance of 60 mm. Determine the 

natural frequency and the period of vibration for a 0.2-kg 

block attached to the same spring.

22–6. An 8-kg block is suspended from a spring having a 

stiffness k = 80 N>m. If the block is given an upward 

velocity of 0.4 m>s when it is 90 mm above its equilibrium 

position, determine the equation which describes the 

motion and the maximum upward displacement of the 

block measured from the equilibrium position. Assume that 

positive displacement is measured downward.

22–7. A 2-lb weight is suspended from a spring having a 

stiffness k = 2 lb>in. If the weight is pushed 1 in. upward 

from its equilibrium position and then released from rest, 

determine the equation which describes the motion. What is 

the amplitude and the natural frequency of the vibration?

*22–8. A 6-lb weight is suspended from a spring having a 

stiffness k = 3 lb>in. If the weight is given an upward 

velocity of 20 ft>s when it is 2 in. above its equilibrium 

position, determine the equation which describes the motion 

and the maximum upward displacement of the  weight, 

measured from the equilibrium position. Assume positive 

displacement is downward.

22–9. A 3-kg block is suspended from a spring having a 

stiffness of k = 200 N>m. If the block is pushed 50 mm 

upward from its equilibrium position and then released 

from rest, determine the equation that describes the motion. 

What are the amplitude and the natural frequency of the 

vibration? Assume that positive displacement is downward.

22–10. The uniform rod of mass m is supported by a pin 

at  A and a spring at B. If B is given a small sideward 

displacement and released, determine the natural period of 

vibration.

A

B

L

k

Prob. 22–10

22–11. While standing in an elevator, the man holds a 

pendulum which consists of an 18-in. cord and a 0.5-lb 

bob.  If the elevator is descending with an acceleration 

a = 4 ft>s2, determine the natural period of vibration for 

small amplitudes of swing.

a � 4 ft/s2 aaa 4 ft4 ft4 ft///sss222

Prob. 22–11

PROBLEMS
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*22–12. Determine the natural period of vibration of the 

uniform bar of mass m when it is displaced downward 

slightly and released.

O

k

L—
2

L—
2

Prob. 22–12

22–13. The body of arbitrary shape has a mass m, mass 

center at G, and a radius of gyration about G of kG. If it is 

displaced a slight amount u from its equilibrium position 

and released, determine the natural period of vibration.

O

u

G

d

Prob. 22–13

22–14. The 20-lb rectangular plate has a natural period of 

vibration t = 0.3 s, as it oscillates around the axis of 

rod  AB. Determine the torsional stiffness k, measured 

in lb # ft>rad, of the rod. Neglect the mass of the rod.

k

4 ft

2 ft

B

A

Prob. 22–14

22–15. A platform, having an unknown mass, is supported 

by four springs, each having the same stiffness k. When 

nothing is on the platform, the period of vertical vibration is 

measured as 2.35 s; whereas if a 3-kg block is supported on 

the platform, the period of vertical vibration is 5.23 s. 

Determine the mass of a block placed on the (empty) 

platform which causes the platform to vibrate vertically 

with a period of 5.62 s. What is the stiffness k of each of 

the springs?

k k

Prob. 22–15
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*22–16. A block of mass m is suspended from two springs 

having a stiffness of k1 and k2, arranged a) parallel to each 

other, and b) as a series. Determine the equivalent stiffness 

of a single spring with the same oscillation characteristics 

and the period of oscillation for each case.

22–17. The 15-kg block is suspended from two springs 

having a different stiffness and arranged a) parallel to each 

other, and b) as a series. If the natural periods of oscillation 

of the parallel system and series system are observed to be 

0.5 s and 1.5 s, respectively, determine the spring stiffnesses 

k1 and k2.

(b)(a)

k2

k2k1 k1

Probs. 22–16/17

22–18. The uniform beam is supported at its ends by two 

springs A and B, each having the same stiffness k. When 

nothing is supported on the beam, it has a period of vertical 

vibration of 0.83 s. If a 50-kg mass is placed at its center, the 

period of vertical vibration is 1.52 s. Compute the stiffness 

of each spring and the mass of the beam.

A

k k

B

Prob. 22–18

22–19. The slender rod has a mass of 0.2 kg and is 

supported at O by a pin and at its end A by two springs, 

each having a stiffness k = 4 N>m. The period of vibration 

of the rod can be set by fixing the 0.5-kg collar C to the rod 

at an appropriate location along its length. If the springs are 

originally unstretched when the rod is vertical, determine 

the position y of the collar so that the natural period of 

vibration becomes t = 1 s. Neglect the size of the collar.

y
O

600 mm

kA

C

k

Prob. 22–19

*22–20. A uniform board is supported on two wheels 

which rotate in opposite directions at a constant angular 

speed. If the coefficient of kinetic friction between the 

wheels and board is m, determine the frequency of vibration 

of the board if it is displaced slightly, a distance x from the 

midpoint between the wheels, and released.

dd

x

A B

Prob. 22–20
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22–21. If the wire AB is subjected to a tension of 20 lb, 

determine the equation which describes the motion when 

the 5-lb weight is displaced 2 in. horizontally and released 

from rest.

6 ft

6 ft

A

B

Prob. 22–21

22–22. The bar has a length l and mass m. It is supported 

at its ends by rollers of negligible mass. If it is given a small 

displacement and released, determine the natural frequency 

of vibration.

A B

R

l

Prob. 22–22

22–23. The 20-kg disk, is pinned at its mass center O and 

supports the 4-kg block A. If the belt which passes over the 

disk is not allowed to slip at its contacting surface, determine 

the natural period of vibration of the system.

k = 50 N/m

A

300 mm

k � 200 N/m

O

Prob. 22–23

*22–24. The 10-kg disk is pin connected at its mass center. 

Determine the natural period of vibration of the disk if the 

springs have sufficient tension in them to prevent the cord 

from slipping on the disk as it oscillates. Hint: Assume that 

the initial stretch in each spring is dO. 

22–25. If the disk in Prob. 22–24 has a mass of 10 kg, 

determine the natural frequency of vibration. Hint: Assume 

that the initial stretch in each spring is dO.

k � 80 N/m

k � 80 N/m

O
150 mm

Probs. 22–24/25
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22–26. A flywheel of mass m, which has a radius of 

gyration about its center of mass of kO, is suspended from a 

circular shaft that has a torsional resistance of M = Cu. If 

the flywheel is given a small angular displacement of u and 

released, determine the natural period of oscillation.

L
O

u

Prob. 22–26

22–27. The 6-lb weight is attached to the rods of negligible 

mass. Determine the natural frequency of vibration of the 

weight when it is displaced slightly from the equilibrium 

position and released.

3 ft

2 ft

k � 5 lb/ft

O

Prob. 22–27

*22–28. The platform AB when empty has a mass of 400 kg, 

center of mass at G1, and natural period of oscillation 

t1 = 2.38 s. If a car, having a mass of 1.2 Mg and center of 

mass at G2, is placed on the platform, the natural period 

of oscillation becomes t2 = 3.16 s. Determine the moment 

of inertia of the car about an axis passing through G2.

A B

2.50 m
1.83 m

O

G2

G1

Prob. 22–28

22–29. The plate of mass m is supported by three 

symmetrically placed cords of length l as shown. If the plate 

is given a slight rotation about a vertical axis through its 

center and released, determine the natural period of 

oscillation.

120�

R

l

l

l

120�

120�

Prob. 22–29
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*22.2 Energy Methods

The simple harmonic motion of a body, discussed in the previous section, 

is due only to gravitational and elastic restoring forces acting on the body. 

Since these forces are conservative, it is also possible to use the 

conservation of energy equation to obtain the body’s natural frequency 

or period of vibration. To show how to do this, consider again the block 

and spring model in Fig. 22–8. When the block is displaced x from the 

equilibrium position, the kinetic energy is T = 1
2 mv2 = 1

2 mx
# 2 and the 

potential energy is V = 1
2 kx2. Since energy is conserved, it is necessary that

 T + V = constant

 12 mx
# 2 + 1

2 kx2 = constant (22–17)

The differential equation describing the accelerated motion of the 

block can be obtained by differentiating this equation with respect to 

time; i.e.,

 m x 
#
x
$ + k x x

# = 0

  x
#
(m x

$ + k x) = 0

Since the velocity x
#
 is not always zero in a vibrating system,

x
$ + vn  

2x = 0  vn = 2k>m
which is the same as Eq. 22–1.

If the conservation of energy equation is written for a system of 
connected bodies, the natural frequency or the equation of motion can 

also be determined by time differentiation. It is not necessary to 

dismember the system to account for the internal forces because they do 

no work.

k

Equilibrium
position

x

Fig. 22–8 

 22.2 ENERGY METHODS 657



658  CHAPTER 22  VIBRAT IONS

22

The suspension of a railroad car consists of a set 
of springs which are mounted between the frame 
of the car and the wheel truck. This will give the 
car a natural frequency of vibration which can be 
determined. (© R.C. Hibbeler)

Procedure for Analysis

The natural frequency vn of a body or system of connected bodies 

can be determined by applying the conservation of energy equation 

using the following procedure.

Energy Equation.
  Draw the body when it is displaced by a small amount from its 

equilibrium position and define the location of the body from its 

equilibrium position by an appropriate position coordinate q.

  Formulate the conservation of energy for the body, T + V =  

constant, in terms of the position coordinate.

  In general, the kinetic energy must account for both the body’s 

translational and rotational motion, T = 1
2 mvG

2 + 1
2 IGv

2,  Eq. 18–2.

  The potential energy is the sum of the gravitational and elastic 

potential energies of the body, V = Vg + Ve , Eq. 18–17. In 

particular, Vg should be measured from a datum for which q = 0 

(equilibrium position).

Time Derivative.
  Take the time derivative of the energy equation using the chain 

rule of calculus and factor out the common terms. The resulting 

differential equation represents the equation of motion for the 

system. The natural frequency of vn is obtained after rearranging 

the terms in the “standard form,” q
$ + vn  

2q = 0.
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The thin hoop shown in Fig. 22–9a is supported by the peg at O. 

Determine the natural period of oscillation for small amplitudes of 

swing. The hoop has a mass m.

SOLUTION
Energy Equation. A diagram of the hoop when it is displaced a small 

amount (q =) u from the equilibrium position is shown in  

Fig. 22–9b. Using the table on the inside back cover and the parallel-

axis theorem to determine IO , the kinetic energy is

T = 1
2 IOvn  

2 = 1
2[mr 2 + mr 2]u

#
2 = mr 2u

#
2

If a horizontal datum is placed through point O, then in the displaced 

position, the potential energy is

V = -mg(r cos u)

The total energy in the system is

T + V = mr 2u
#
2 - mgr cos u

Time Derivative.

 mr 2(2u
#
)u
$

+ mgr (sin u)u
#
= 0

 mru
#
(2ru

$
+ g sin u) = 0

Since u
#
 is not always equal to zero, from the terms in parentheses,

u
$

+
g

2r
 sin u = 0

For small angle u, sin u ^ u.

 u
$

+
g

2r
  u = 0

 vn = A
g

2r
so that

 t =
2p

vn
= 2pA

2r
g

 Ans.

EXAMPLE   22.5

r

O

(a)

(b)

r cos u

O

r

Datum

FO

W � mg

u

Fig. 22–9 
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A 10-kg block is suspended from a cord wrapped around a 5-kg disk, 

as shown in Fig. 22–10a. If the spring has a stiffness k = 200 N>m, 

determine the natural period of vibration for the system.

SOLUTION
Energy Equation. A diagram of the block and disk when they are 

displaced by respective amounts s and u from the equilibrium position 

is shown in Fig. 22–10b. Since s = (0.15 m)u, then vb � s
# = (0.15 m)u

#
. 

Thus, the kinetic energy of the system is

 T = 1
2 mbvb

2 + 1
2 IOvd

2

 = 1
2(10 kg)[(0.15 m)u

#
]2 + 1

2 31
2(5 kg)(0.15 m)24(u# )2

 = 0.1406(u
#
)2

Establishing the datum at the equilibrium position of the block and 

realizing that the spring stretches sst for equilibrium, the potential 

energy is

  V = 1
2 k(sst + s)2 - Ws

  = 1
2(200 N>m)[sst + (0.15 m)u]2 - 98.1 N[(0.15 m)u]

The total energy for the system is therefore,

T + V = 0.1406(u
#
)2 + 100(sst + 0.15u)2 - 14.715u

Time Derivative.

0.28125(u
#
)u
$

+ 200(sst + 0.15u)0.15u
#

- 14.72u
#
= 0

Since sst = 98.1>200 = 0.4905 m, the above equation reduces to the 

“standard form”

u
$

+ 16u = 0

so that

 vn = 216 = 4 rad>s
Thus,

 t =
2p

vn
=

2p

4
= 1.57 s Ans.

EXAMPLE  22.6

O

u

u

s � 0.15 u

0.15 m

0.15 u

(b)
98.1 N

Datum

sst � s

 

Fig. 22–10 

k � 200 N/m

0.15 m
O

(a)
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PROBLEMS

22–33. If the 20-kg wheel is displaced a small amount and 

released, determine the natural period of vibration. The 

radius of gyration of the wheel is kG = 0.36 m. The wheel 

rolls without slipping.

k � 500 N/m

G

0.5 m

Prob. 22–33

22–34. Determine the differential equation of motion of 

the 3-kg spool. Assume that it does not slip at the surface of 

contact as it oscillates. The radius of gyration of the spool 

about its center of mass is kG = 125 mm.

k � 400 N/m

G

200 mm

100 mm

Prob. 22–34

22–35. Determine the natural period of vibration of the 

3-kg sphere. Neglect the mass of the rod and the size of 

the sphere.

300 mm300 mm

k = 500 N/m
O

Prob. 22–35

22–30. Determine the differential equation of motion of 

the 3-kg block when it is displaced slightly and released. The 

surface is smooth and the springs are originally unstretched.

k = 500 N/m k = 500 N/m

3 kg

Prob. 22–30

22–31. Determine the natural period of vibration of the 

pendulum. Consider the two rods to be slender, each having 

a weight of 8 lb>ft.

O

1 ft 1 ft

2 ft

Prob. 22–31

*22–32. Determine the natural period of vibration of the 

10-lb semicircular disk.

0.5 ft

Prob. 22–32
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*22–36. If the lower end of the 6-kg slender rod is 

displaced a small amount and released from rest, determine 

the natural frequency of vibration. Each spring has a 

stiffness of k = 200 N>m and is unstretched when the rod is 

hanging vertically.

O

kk

2 m

2 m

Prob. 22–36

22–37. The disk has a weight of 30 lb and rolls without 

slipping on the horizontal surface as it oscillates about its 

equilibrium position. If the disk is displaced, by rolling it 

counterclockwise 0.2 rad, determine the equation which 

describes its oscillatory motion and the natural period when 

it is released.

0.5 ft

k � 80 lb/ft

Prob. 22–37

22–38. The machine has a mass m and is uniformly 

supported by four springs, each having a stiffness k. 

Determine the natural period of vertical vibration.

d—
2

d—
2

G

kk

Prob. 22–38

22–39. The slender rod has a weight of 4 lb>ft. If it is 

supported in the horizontal plane by a ball-and-socket joint 

at A and a cable at B, determine the natural frequency of 

vibration when the end B is given a small horizontal 

displacement and then released.

1.5 ft

B

A 0.75 ft

Prob. 22–39

*22–40. If the slender rod has a weight of 5 lb, determine 

the natural frequency of vibration. The springs are originally 

unstretched.

k � 5 lb/ft

O

k � 4 lb/ft

2 ft

1 ft

Prob. 22–40
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(a)

k F � F0 sin v0 t

Equilibrium
position x
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*22.3 Undamped Forced Vibration

Undamped forced vibration is considered to be one of the most important 

types of vibrating motion in engineering. Its principles can be used to 

describe the motion of many types of machines and structures.

Periodic Force. The block and spring shown in Fig. 22–11a provide 

a convenient model which represents the vibrational characteristics of a 

system subjected to a periodic force F = F0 sin v0t. This force has an 

amplitude of F0 and a forcing frequency v0 . The free-body diagram for 

the block when it is displaced a distance x is shown in Fig. 22–11b. 

Applying the equation of motion, we have

S+ �Fx = max; F0 sin v0t - kx = mx
$

or

 x
$ +

k
m

 x =
F0

m
 sin v0t (22–18)

This equation is a nonhomogeneous second-order differential equation. 

The general solution consists of a complementary solution, xc , plus a 

particular solution, xp .

The complementary solution is determined by setting the term on the 

right side of Eq. 22–18 equal to zero and solving the resulting 

homogeneous equation. The solution is defined by Eq. 22–9, i.e.,

 xc = C sin(vnt + f) (22–19)

where vn is the natural frequency,  vn = 2k>m, Eq. 22–2.

Since the motion is periodic, the particular solution of Eq. 22–18 can be 

determined by assuming a solution of the form

 xp = X sin v0t (22–20)

where X is a constant. Taking the second time derivative and substituting 

into Eq. 22–18 yields

-Xv0
2 sin v0t +

k
m

 (X sin v0t) =
F0

m
 sin v0t

Factoring out sin v 0t and solving for X gives

 X =
F0>m

(k>m) - v0
2
=

F0>k
1 - (v0>vn)

2
  (22–21)

Substituting into Eq. 22–20, we obtain the particular solution

  xp =
F0>k

1 - (v0>vn)
2

 sin v0t  (22–22)

W � mg

kx

(b)
N � W

F � F0 sin v0 t

Fig. 22–11 

Shaker tables provide forced vibration 
and are used to separate out granular 
materials. (© R.C. Hibbeler)
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The general solution is therefore the sum of two sine functions having 

different frequencies.

 x = xc + xp = C sin(vnt + f) +
F0>k

1 - (v0>vn)
2

 sin v0t (22–23)

The complementary solution xc defines the free vibration, which depends 

on the natural frequency vn = 1k>m and the constants C and f. The 

particular solution xp describes the forced vibration of the block caused 

by the applied force F = F0 sin v0t. Since all vibrating systems are subject 

to friction, the free vibration, xc , will in time dampen out. For this reason 

the free vibration is referred to as transient, and the forced vibration is 

called steady-state, since it is the only vibration that remains.

From Eq. 22–21 it is seen that the amplitude of forced or steady-state 

vibration depends on the frequency ratio v0>vn . If the magnification 
factor MF is defined as the ratio of the amplitude of steady-state 

vibration, X, to the static deflection, F0>k, which would be produced by 

the amplitude of the periodic force F0 , then, from Eq. 22–21,

The soil compactor operates  
by forced vibration developed 
by an internal motor. It is    
im portant that the forcing  
fre quency not be close to the 
natural frequency of vibration 
of the compactor, which can be 
determined when the motor is 
turned off; otherwise resonance 
will occur and the machine 
will  become uncontrollable. 
(© R.C. Hibbeler)
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 MF =
X

F0>k =
1

1 - (v0>vn)
2
 (22–24)

This equation is graphed in Fig. 22–12. Note that if the force or 

displacement is applied with a frequency close to the natural frequency 

of the system, i.e., v0>vn � 1, the amplitude of vibration of the block 

becomes extremely large. This occurs because the force F is applied to 

the block so that it always follows the motion of the block. This condition 

is called resonance, and in practice, resonating vibrations can cause 

tremendous stress and rapid failure of parts.* 

Periodic Support Displacement. Forced vibrations can also 

arise from the periodic excitation of the support of a system. The model 

shown in Fig. 22–13a represents the periodic vibration of a block which is 

caused by harmonic movement d = d0 sin v0t of the support. The free-

body diagram for the block in this case is shown in Fig. 22–13b. The 

displacement d of the support is measured from the point of zero 

displacement, i.e., when the radial line OA coincides with OB. Therefore, 

general deformation of the spring is (x - d0 sin v0t). Applying the 

equation of motion yields

S+ Fx = max; -k(x - d0 sin v0t) = mx
$

or

 x
$ +

k
m

 x =
kd0

m
 sin v0t (22–25)

By comparison, this equation is identical to the form of Eq. 22–18, 

provided F0 is replaced by kd0 . If this substitution is made into the 

solutions defined by Eqs. 22–21 to 22–23, the results are appropriate for 

describing the motion of the block when subjected to the support 

displacement d = d0 sin v0t.

*A swing has a natural period of vibration, as determined in Example 22.1. If someone 

pushes on the swing only when it reaches its highest point, neglecting drag or wind 

resistance, resonance will occur since the natural and forcing frequencies are the same.

1

3

2

1

0

�1

�2

2 3

MF

(    )vn

v0

(v0 �� vn)

Fig. 22–12 

(a)

k

Equilibrium
position

x

O

O

A
B

d � d0 sin v0t

A

B

d0

v0

V0

W � mg

(b)

N � W

k(x � d0 sin v0t)

Fig. 22–13 
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The instrument shown in Fig. 22–14 is rigidly attached to a platform P, 

which in turn is supported by four springs, each having a stiffness 

k = 800 N>m. If the floor is subjected to a vertical displacement 

d = 10 sin(8t) mm, where t is in seconds, determine the amplitude of 

steady-state vibration. What is the frequency of the floor vibration 

required to cause resonance? The instrument and platform have a 

total mass of 20 kg.

P

k k

Fig. 22–14 

SOLUTION
The natural frequency is

 vn = A
k
m

=  B
4(800 N>m)

20 kg
= 12.65 rad>s

The amplitude of steady-state vibration is found using Eq. 22–21,  

with kd0 replacing F0 .

X =
d0

1 - (v0>vn)
2
=

10

1 - [(8 rad>s)>(12.65 rad>s)]2
= 16.7 mm Ans.

Resonance will occur when the amplitude of vibration X caused by 

the floor displacement approaches infinity.  This requires

  v0 = vn = 12.6 rad>s Ans.

EXAMPLE   22.7
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*22.4 Viscous Damped Free Vibration

The vibration analysis considered thus far has not included the effects of 

friction or damping in the system, and as a result, the solutions obtained 

are only in close agreement with the actual motion. Since all vibrations 

die out in time, the presence of damping forces should be included in the 

analysis.

In many cases damping is attributed to the resistance created by the 

substance, such as water, oil, or air, in which the system vibrates. Provided 

the body moves slowly through this substance, the resistance to motion is 

directly proportional to the body’s speed. The type of force developed 

under these conditions is called a viscous damping force. The magnitude 

of this force is expressed by an equation of the form

 F = cx
#
 (22–26)

where the constant c is called the coefficient of viscous damping and has 

units of N # s>m or lb # s>ft.
The vibrating motion of a body or system having viscous damping can 

be characterized by the block and spring shown in Fig. 22–15a. The effect 

of damping is provided by the dashpot connected to the block on the 

right side. Damping occurs when the piston P moves to the right or left 

within the enclosed cylinder. The cylinder contains a fluid, and the 

motion of the piston is retarded since the fluid must flow around or 

through a small hole in the piston. The dashpot is assumed to have a 

coefficient of viscous damping c.

If the block is displaced a distance x from its equilibrium position, the 

resulting free-body diagram is shown in Fig. 22–15b. Both the spring and 

damping force oppose the forward motion of the block, so that applying 

the equation of motion yields

S+ �Fx = max ; -kx - cx
# = mx

$

or

 mx
$ + cx

# + kx = 0 (22–27)

This linear, second-order, homogeneous, differential equation has a 

solution of the form

x = elt

where e is the base of the natural logarithm and l (lambda) is a constant. 

The value of l can be obtained by substituting this solution and its time 

derivatives into Eq. 22–27, which yields

ml2elt + clelt + kelt = 0

or

elt(ml2 + cl + k) = 0

(a)

k

Equilibrium
position

x P

c

W � mg

kx

(b)

N � W

cx
.

Fig. 22–15 
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Since elt can never be zero, a solution is possible provided

ml2 + cl + k = 0

Hence, by the quadratic formula, the two values of l are

  l1 = -
c

2m
+ B a c

2m
b2

-
k
m

 

(22–28)

 l2 = -
c

2m
- B a c

2m
b2

-
k
m

The general solution of Eq. 22–27 is therefore a combination of 

exponentials which involves both of these roots. There are three possible 

combinations of l1 and l2 which must be considered. Before discussing 

these combinations, however, we will first define the critical damping 
coefficient cc as the value of c which makes the radical in Eqs. 22–28 equal 

to zero; i.e.,

a cc

2m
b2

-
k
m

= 0

or

 cc = 2mA
k
m

= 2mvn  (22–29)

Overdamped System. When c 7 cc , the roots l1 and l2 are both 

real. The general solution of Eq. 22–27 can then be written as

 x = Ael1t + Bel2t (22–30)

Motion corresponding to this solution is nonvibrating. The effect of 

damping is so strong that when the block is displaced and released, it 

simply creeps back to its original position without oscillating. The system 

is said to be overdamped.

Critically Damped System. If c = cc, then l1 = l2 = -cc>2m = -vn. 

This situation is known as critical damping, since it represents a condition 

where c has the smallest value necessary to cause the system to be 

nonvibrating. Using the methods of differential equations, it can be shown 

that the solution to Eq. 22–27 for critical damping is

 x = (A + Bt)e-vnt (22–31)
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Underdamped System. Most often c 6 cc , in which case the 

system is referred to as underdamped. In this case the roots l1 and l2 are 

complex numbers, and it can be shown that the general solution of 

Eq. 22–27 can be written as

 x = D[e-(c>2m)t sin(vdt + f)]  (22–32)

where D and f are constants generally determined from the initial 

conditions of the problem. The constant vd is called the damped natural 
frequency of the system. It has a value of

    vd = B
k
m

- a c

2m
b2

= vnB1 - a c
cc
b2

 (22–33)

where the ratio c>cc is called the damping factor.

The graph of Eq. 22–32 is shown in Fig. 22–16. The initial limit of 

motion, D, diminishes with each cycle of vibration, since motion is 

confined within the bounds of the exponential curve. Using the damped 

natural frequency vd , the period of damped vibration can be written as

 td =
2p

vd
 (22–34)

Since vd 6 vn , Eq. 22–33, the period of damped vibration, td , will be 

greater than that of free vibration, t = 2p>vn .

x � D[e�(c/2m)tsin (vd t � f)]

x2

x1
D

D

x

De�(c/2m)t

�De�(c/2m)t

x3

x4

t1 t2 t3 t4
t

td

Fig. 22–16 
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*22.5 Viscous Damped Forced Vibration

The most general case of single-degree-of-freedom vibrating motion 

occurs when the system includes the effects of forced motion and induced 

damping. The analysis of this particular type of vibration is of practical 

value when applied to systems having significant damping characteristics.

If a dashpot is attached to the block and spring shown in Fig. 22–11a, 

the differential equation which describes the motion becomes

 mx
$ + cx

# + kx = F0 sin v0t (22–35)

A similar equation can be written for a block and spring having a 

periodic support displacement, Fig. 22–13a, which includes the effects 

of damping. In that case, however, F0 is replaced by kd0 . Since Eq. 22–35 

is nonhomogeneous, the general solution is the sum of a complementary 

solution, xc , and a particular solution, xp . The complementary solution 

is determined by setting the right side of Eq. 22–35 equal to zero and 

solving the homogeneous equation, which is equivalent to Eq. 22–27. 

The solution is therefore given by Eq. 22–30, 22–31, or 22–32, depending 

on the values of l1 and l2 . Because all systems are subjected to friction, 

then this solution will dampen out with time. Only the particular 

solution, which describes the steady-state vibration of the system, will 

remain. Since the applied forcing function is harmonic, the steady-state 

motion will also be harmonic. Consequently, the particular solution will 

be of the form

 XP = X� sin(v0 t - f�) (22–36)

The constants X� and f� are determined by taking the first and second 

time derivatives and substituting them into Eq. 22–35, which after 

simplification yields

-X�mv0
2 sin(v0t - f�) +

X�cv0 cos(v0t - f�) + X�k sin(v0t - f�) = F0 sin v0t

Since this equation holds for all time, the constant coefficients can be 

obtained by setting v0t - f� = 0 and v0t - f� = p>2, which causes the 

above equation to become

  X�cv0 = F0 sin f�  

  -X�mv0
2 + X�k = F0 cos f� 
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The amplitude is obtained by squaring these equations, adding the 

results, and using the identity sin2f� +  cos2f� = 1, which gives

 X� =
F0

2(k - mv0
2)2 + c2v0

2  
 (22–37)

Dividing the first equation by the second gives

 f� = tan-1 c cv0

k - mv0
2
d  (22–38)

Since vn = 2k>m and cc = 2mvn , then the above equations can also be 

written as

 X� =
F0>k

2[1 - (v0>vn)
2]2 + [2(c>cc)(v0>vn)]

2
 

 f� = tan-1 c 2(c>cc)(v0>vn)

1 - (v0>vn)
2
d  

(22–39)

The angle f� represents the phase difference between the applied force 

and the resulting steady-state vibration of the damped system.

The magnification factor MF has been defined in Sec. 22.3 as the ratio 

of the amplitude of deflection caused by the forced vibration to the 

deflection caused by a static force F0 . Thus,

 MF =
X�

F0>k =
1

2[1 - (v0>vn)
2]2 + [2(c>cc)(v0>vn)]

2
 (22–40)

The MF is plotted in Fig. 22–17 versus the frequency ratio v0>vn for 

various values of the damping factor c>cc . It can be seen from this graph 

that the magnification of the amplitude increases as the damping factor 

decreases. Resonance obviously occurs only when the damping factor is 

zero and the frequency ratio equals 1.

5

4

3

2

1

0 1 2 3

MF

 � 0cc
c

v0
vn

 � 0.10cc
c

 � 0.50cc
c

 � 0.25cc
c

 � 1.00cc
c

 Fig. 22–17 
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The 30-kg electric motor shown in Fig. 22–18 is confined to move 

vertically, and is supported by four springs, each spring having a 

stiffness of 200 N>m. If the rotor is unbalanced such that its effect is 

equivalent to a 4-kg mass located 60 mm from the axis of rotation, 

determine the amplitude of vibration when the rotor is turning at 

v0 = 10 rad>s. The damping factor is c>cc = 0.15.

V

Fig. 22–18 

SOLUTION
The periodic force which causes the motor to vibrate is the centrifugal 

force due to the unbalanced rotor. This force has a constant magnitude of

F0 = man = mrv0
2 = 4 kg(0.06 m)(10 rad>s)2 = 24 N

The stiffness of the entire system of four springs is k = 4(200 N>m) = 

800 N>m. Therefore, the natural frequency of vibration is

vn = A
k
m

= B
800 N>m

30 kg
= 5.164 rad>s

Since the damping factor is known, the steady-state amplitude can be 

determined from the first of Eqs. 22–39, i.e.,

  X� =
F0>k

2[1 - (v0>vn)
2]2 + [2(c>cc)(v0>vn)]

2
 

  =
24>800

2 [1 - (10>5.164)2]2 + [2(0.15)(10>5.164)]2
 

  = 0.0107 m = 10.7 mm  Ans.

EXAMPLE   22.8
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*22.6 Electrical Circuit Analogs

The characteristics of a vibrating mechanical system can be represented by 

an electric circuit. Consider the circuit shown in Fig. 22–19a, which consists 

of an inductor L, a resistor R, and a capacitor C. When a voltage E(t) is 

applied, it causes a current of magnitude i to flow through the circuit. As 

the current flows past the inductor the voltage drop is L(di>dt), when it 

flows across the resistor the drop is Ri, and when it arrives at the capacitor 

the drop is (1>C)1 i dt. Since current cannot flow past a capacitor, it is only 

possible to measure the charge q acting on the capacitor. The charge can, 

however, be related to the current by the equation i = dq>dt. Thus, the 

voltage drops which occur across the inductor, resistor, and capacitor 

become L d2q>dt2, R dq>dt, and q>C, respectively. According to Kirchhoff’s 

voltage law, the applied voltage balances the sum of the voltage drops 

around the circuit. Therefore,

 L 
d2q

dt2
+ R 

dq

dt
+

1

C
 q = E(t) (22–41)

Consider now the model of a single-degree-of-freedom mechanical 

system, Fig. 22–19b, which is subjected to both a general forcing function 

F(t) and damping. The equation of motion for this system was established 

in the previous section and can be written as

 m 
d2x

dt2
+ c 

dx

dt
+ kx = F(t) (22–42)

By comparison, it is seen that Eqs. 22–41 and 22–42 have the same form, 

and hence mathematically the procedure of analyzing an electric circuit 

is the same as that of analyzing a vibrating mechanical system. The 

analogs between the two equations are given in Table 22–1.

This analogy has important application to experimental work, for it is 

much easier to simulate the vibration of a complex mechanical system 

using an electric circuit, which can be constructed on an analog computer, 

than to make an equivalent mechanical spring-and-dashpot model.

C

L R

E (t)

(a)

k

m F (t)

(b)

c

Fig. 22–19 

TABLE 22–1  

Electrical–Mechanical Analogs

Electrical Mechanical

Electric charge q Displacement x

Electric current i Velocity dx>dt

Voltage E(t) Applied force F(t)

Inductance L Mass m

Resistance R Viscous damping 

coefficient

c

Reciprocal of capacitance 1>C Spring stiffness k
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22–46. A 5-kg block is suspended from a spring having a 

stiffness of 300 N>m. If the block is acted upon by a vertical 

force F = (7 sin 8t) N, where t is in seconds, determine the 

equation which describes the motion of the block when it is 

pulled down 100 mm from the equilibrium position and 

released from rest at t = 0. Assume that positive 

displacement is downward.

k � 300 N/m

F � 7 sin 8t

Prob. 22–46

22–47. The uniform rod has a mass of m. If it is acted upon 

by a periodic force of F = F0 sin vt, determine the 

amplitude of the steady-state vibration.

kk

L
2

L
2

F � F0  sin vt

A

Prob. 22–47

22–41. If the block-and-spring model is subjected to the 

periodic force F = F0 cos vt, show that the differential 

equation of motion is x
$

+ (k >m)x = (F0>m ) cos vt , where x 

is measured from the equilibrium position of the block. 

What is the general solution of this equation?

F � F0 cos vtk

Equilibrium
position

x

m

Prob. 22–41

22–42. A block which has a mass m is suspended from a 

spring having a stiffness k. If an impressed downward vertical 

force F = FO acts on the weight, determine the equation 

which describes the position of the block as a function of time.

22–43. A 4-lb weight is attached to a spring having a 

stiffness k = 10 lb>ft. The weight is drawn downward a 

distance of 4 in. and released from rest. If the support moves 

with a vertical displacement d = (0.5 sin 4t) in., where t is in 

seconds, determine the equation which describes the 

position of the weight as a function of time.

*22–44. A 4-kg block is suspended from a spring that has 

a stiffness of k = 600 N>m. The block is drawn downward  

50 mm from the equilibrium position and released from 

rest when t = 0. If the support moves with an impressed 

displacement of d = (10 sin 4t) mm, where t is in seconds, 

determine the equation that describes the vertical  

motion of the block. Assume positive displacement is 

downward.

22–45. Use a block-and-spring model like that shown in 

Fig.  22–13a, but suspended from a vertical position and 

subjected to a periodic support displacement d = d0 sin v0t, 
determine the equation of motion for the system, and 

obtain its general solution. Define the displacement y 
measured from the static equilibrium position of the block 

when t = 0.

PROBLEMS
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*22–48. The 30-lb block is attached to two springs having 

a stiffness of 10 lb>ft. A periodic force F = (8 cos 3t) lb, 

where t is in seconds, is applied to the block. Determine the 

maximum speed of the block after frictional forces cause 

the free vibrations to dampen out.

    k � 10 lb/ft

    k � 10 lb/ft

F � 8 cos 3t

Prob. 22–48

22–49. The light elastic rod supports a 4-kg sphere. When 

an 18-N vertical force is applied to the sphere, the rod 

deflects 14 mm. If the wall oscillates with harmonic 

frequency of 2 Hz and has an amplitude of 15 mm, determine 

the amplitude of vibration for the sphere.

0.75 m

Prob. 22–49

22–50. Find the differential equation for small oscillations 

in terms of u for the uniform rod of mass m. Also show that 

if c 6 1mk >2, then the system remains underdamped. The 

rod is in a horizontal position when it is in equilibrium.

A
B

a

C

c k 

2

u

a

Prob. 22–50

22–51. The 40-kg block is attached to a spring having a 

stiffness of 800 N>m. A force F = (100 cos 2t) N, where t is 

in seconds is applied to the block. Determine the maximum 

speed of the block for the steady-state vibration.

F � (100 cos 2t) N

k � 800 N/m

Prob. 22–51

*22–52. Using a block-and-spring model, like that shown 

in Fig. 22–13a, but suspended from a vertical position and 

subjected to a periodic support displacement of d = d0 cos v0t, 
determine the equation of motion for the system, and obtain 

its general solution. Define the displacement y measured from 

the static equilibrium position of the block when t = 0.

22–53. The fan has a mass of 25 kg and is fixed to the end 

of a horizontal beam that has a negligible mass. The fan 

blade is mounted eccentrically on the shaft such that it is 

equivalent to an unbalanced 3.5-kg mass located 100 mm 

from the axis of rotation. If the static deflection of the beam 

is 50 mm as a result of the weight of the fan, determine the 

angular velocity of the fan blade at which resonance will 

occur. Hint: See the first part of Example 22.8.

22–54. In Prob. 22–53, determine the amplitude of steady-

state vibration of the fan if its angular velocity is 10 rad>s.

22–55. What will be the amplitude of steady-state vibration 

of the fan in Prob. 22–53 if the angular velocity of the fan 

blade is 18 rad>s? Hint: See the first part of Example 22.8.

V

Probs. 22–53/54/55
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*22–60. The 450-kg trailer is pulled with a constant speed 

over the surface of a bumpy road, which may be approximated 

by a cosine curve having an amplitude of 50 mm and wave 

length of 4 m. If the two springs s which support the trailer 

each have a stiffness of 800  N>m, determine the speed v 

which will cause the greatest vibration (resonance) of the 

trailer. Neglect the weight of the wheels.

22–61. Determine the amplitude of vibration of the trailer 

in Prob. 22–60 if the speed v = 15 km>h.

s

v

100 mm

2 m 2 m

Probs. 22–60/61

22–62. The motor of mass M is supported by a simply 

supported beam of negligible mass. If block A of mass m is 

clipped onto the rotor, which is turning at constant angular 

velocity of v, determine the amplitude of the steady-

state  vibration. Hint: When the beam is subjected to a 

concentrated force of P at its mid-span, it deflects 

d = PL3>48EI at this point. Here E is Young’s modulus of 

elasticity, a property of the material, and I is the moment of 

inertia of the beam’s cross-sectional area.

A

r

L
2

L
2

Prob. 22–62

*22–56. The small block at A has a mass of 4 kg and is 

mounted on the bent rod having negligible mass. If the rotor 

at B causes a harmonic movement dB = (0.1 cos 15t) m, 

where t is in seconds, determine the steady-state amplitude 

of vibration of the block.

k � 15 N/m

0.6 m

1.2 m

A
O

B

V

Prob. 22–56

22–57. The electric motor turns an eccentric flywheel 

which is equivalent to an unbalanced 0.25-lb weight located 

10 in. from the axis of rotation. If the static deflection of the 

beam is 1 in. because of the weight of the motor, determine 

the angular velocity of the flywheel at which resonance will 

occur. The motor weighs 150 lb. Neglect the mass of 

the beam.

22–58. What will be the amplitude of steady-state 

vibration of the motor in Prob. 22–57 if the angular velocity 

of the flywheel is 20 rad>  s?

22–59. Determine the angular velocity of the flywheel in 

Prob. 22–57 which will produce an amplitude of vibration 

of 0.25 in.

V

Probs. 22–57/58/59
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*22–68. The 200-lb electric motor is fastened to the 

midpoint of the simply supported beam. It is found that  

the beam deflects 2 in. when the motor is not running. The 

motor turns an eccentric flywheel which is equivalent to an 

unbalanced weight of 1 lb located 5 in. from the axis of 

rotation. If the motor is turning at 100 rpm, determine the 

amplitude of steady-state vibration. The damping factor is 

c>cc = 0.20. Neglect the mass of the beam.

Prob. 22–68

22–69. Two identical dashpots are arranged parallel to 

each other, as shown. Show that if the damping coefficient  

c 6 1mk, then the block of mass m will vibrate as an 

underdamped system.

k 

cc

Prob. 22–69

22–63. The spring system is connected to a crosshead that 

oscillates vertically when the wheel rotates with a constant 

angular velocity of V. If the amplitude of the steady-state 

vibration is observed to be 400 mm, and the springs each 

have a stiffness of k = 2500 N>m, determine the two 

possible values of V at which the wheel must rotate. The 

block has a mass of 50 kg.

*22–64. The spring system is connected to a crosshead that 

oscillates vertically when the wheel rotates with a constant 

angular velocity of v = 5 rad>s. If the amplitude of the 

steady-state vibration is observed to be 400 mm, determine 

the two possible values of the stiffness k of the springs. The 

block has a mass of 50 kg.

200 mm

k k

v

Probs. 22–63/64

22–65. A 7-lb block is suspended from a spring having a 

stiffness of k = 75 lb>ft. The support to which the spring is 

attached is given simple harmonic motion which may be 

expressed as d = (0.15 sin 2t) ft, where t is in seconds. If the 

damping factor is c>cc = 0.8, determine the phase angle f 

of forced vibration.

22–66. Determine the magnification factor of the block, 

spring, and dashpot combination in Prob. 22–65.

22–67. A block having a mass of 7 kg is suspended from a 

spring that has a stiffness k = 600 N>m. If the block is given 

an upward velocity of 0.6 m>s from its equilibrium position 

at t = 0, determine its position as a function of time. 

Assume that positive displacement of the block is downward 

and that motion takes place in a medium which furnishes a 

damping force F = (50 � v � ) N, where v  is in m>  s.

 22.6 ELECTRICAL CIRCUIT ANALOGS 677
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22–73. The bar has a weight of 6 lb. If the stiffness of the 

spring is k = 8 lb>ft and the dashpot has a damping 

coefficient c = 60 lb # s>ft, determine the differential 

equation which describes the motion in terms of the angle u

of the bar’s rotation. Also, what should be the damping 

coefficient of the dashpot if the bar is to be critically 

damped?

c

CA

k

B

2 ft 3 ft

Prob. 22–73

22–74. A bullet of mass m has a velocity of v0 just before it 

strikes the target of mass M. If the bullet embeds in the 

target, and the vibration is to be critically damped, determine 

the dashpot’s critical damping coefficient, and the springs’ 

maximum compression. The target is free to move along the 

two horizontal guides that are “nested” in the springs.

22–75. A bullet of mass m has a velocity v0 just before it 

strikes the target of mass M. If the bullet embeds in the 

target, and the dashpot’s damping coefficient is 0 6 c << cc, 

determine the springs’ maximum compression. The target is 

free to move along the two horizontal guides that are 

“nested” in the springs.

k

c

v0

k

Probs. 22–74/75

22–70. The damping factor, c>cc, may be determined 

experimentally by measuring the successive amplitudes 

of  vibrating motion of a system. If two of these 

maximum  displacements can be approximated by x1   

and x2, as shown  in Fig. 22–16, show that  

ln  (x1>x2) =  2p(c>cc)>21- (c>cc)2. The quantity ln (x1>x2) 

is called the logarithmic decrement.

22–71. If the amplitude of the 50-lb cylinder’s steady-state 

vibration is 6 in., determine the wheel’s angular velocity v.

c � 25 lb�s/ft

k � 200 lb/ftk � 200 lb/ft

9 in.
v

Prob. 22–71

*22–72. The block, having a weight of 12 lb, is immersed in 

a liquid such that the damping force acting on the block has 

a magnitude of F = (0.7|v|) lb, where v is in ft>s. If the block 

is pulled down 0.62 ft and released from rest, determine the 

position of the block as a function of time. The spring has a 

stiffness of k = 53 lb>ft. Assume that positive displacement 

is downward.

k

Prob. 22–72
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22–78. Draw the electrical circuit that is equivalent to the 

mechanical system shown. What is the differential equation 

which describes the charge q in the circuit?

k kc

m

Prob. 22–78

22–79. Draw the electrical circuit that is equivalent to the 

mechanical system shown. Determine the differential 

equation which describes the charge q in the circuit.

k

m

c

Prob. 22–79

*22–76. Determine the differential equation of motion for 

the damped vibratory system shown. What type of motion 

occurs? Take k = 100 N>m, c = 200 N # s>m, m = 25 kg.

k k k

c c

m

Prob. 22–76

22–77. Draw the electrical circuit that is equivalent to the 

mechanical system shown. Determine the differential 

equation which describes the charge q in the circuit.

k

m
F � F0 cos vt  

c

Prob. 22–77
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CHAPTER REVIEW

Undamped Free Vibration

A body has free vibration when 

gravitational or elastic restoring forces 

cause the motion. This motion is 

undamped when friction forces are 

neglected. The periodic motion of an 

undamped, freely vibrating body can be 

studied by displacing the body from the 

equilibrium position and then applying 

the equation of motion along the path.

For a one-degree-of-freedom system,  

the resulting differential equation can  

be written in terms of its natural 

frequency vn .

Equilibrium
position

x

k

x
$ + vn 

2 x = 0  t =
2p

vn
  f =

1

t
=

vn

2p

Energy Methods

Provided the restoring forces acting on 

the body are gravitational and elastic, 

then conservation of energy can also be 

used to determine its simple harmonic 

motion. To do this, the body is displaced 

a small amount from its equilibrium 

position, and an expression for its 

kinetic and potential energy is written. 

The time derivative  of this equation can 

then be rearranged  in the standard form 

x
$ + vn 

2 x = 0.

Undamped Forced Vibration

When the equation of motion is applied 

to a body, which is subjected to a periodic 

force, or the support has a displacement 

with a frequency v0 , then the solution of 

the differential equation consists of a 

complementary solution and a particular 

solution. The complementary solution is 

caused by the free vibration and can be 

neglected. The particular solution is 

caused by the forced vibration.

Resonance will occur if the natural 

frequency of vibration vn is equal to the 

forcing frequency v0 . This should be 

avoided, since the motion will tend to 

become unbounded.

k F � F0 sin v0t

Equilibrium
position x

xp =
F0>k

1 - (v0>vn)
2

 sin v0t
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Viscous Damped Free Vibration

A viscous damping force is caused by 

fluid drag on the system as it vibrates. If 

the motion is slow, this drag force will be 

proportional to the velocity, that is, 

F = cx
#
. Here c is the coefficient of 

viscous damping. By comparing its value 

to the critical damping coefficient 

cc = 2mvn , we can specify the type of 

vibration that occurs. If c 7 cc , it is an 

overdamped system; if c = cc , it is a 

critically damped system; if c 6 cc , it is 

an underdamped system.

k

Equilibrium
position

x

c

Viscous Damped Forced Vibration

The most general type of vibration for a 

one-degree-of-freedom system occurs 

when the system is damped and 

subjected to periodic forced motion. The 

solution provides insight as to how the 

damping factor, c>cc , and the frequency 

ratio, v0>vn , influence the vibration.

Resonance is avoided provided 

c>cc � 0 and v0>vn � 1.

Electrical Circuit Analogs

The vibrating motion of a complex 

mechanical system can be studied by 

modeling it as an electrical circuit. This is 

possible since the differential equations 

that govern the behavior of each system 

are the same.



Mathematical 
Expressions

Quadratic Formula

If ax2 + bx + c = 0, then x =
-b { 2b2 - 4ac

2a

Hyperbolic Functions

sinh x =
ex - e-x

2
, cosh x =

ex + e-x

2
, tanh x =

sinh x

cosh x

Trigonometric Identities

sin u =
A

C
, csc u =

C

A

cos u =
B

C
, sec u =

C

B

tan u =
A

B
, cot u =

B

A
sin2 u + cos2 u = 1

sin(u { f) = sin u cos f { cos u sin f

sin 2u = 2 sin u cos u

cos(u { f) = cos u cos f | sin u sin f

cos 2u = cos2 u - sin2 u

cos u = {A
1 + cos 2u

2
, sin u = {A

1 - cos 2u

2

tan u =
sin u

cos u

1 + tan2 u = sec2 u 1 + cot2 u = csc2 u

Power-Series Expansions

 sin x = x -
x3

3!
+ g sinh x = x +

x3

3!
+ g

 cos x = 1 -
x2

2!
+ g cosh x = 1 +

x2

2!
+ g

A
APPENDIX

Derivatives

d

dx
 (un) = nun -1 

du

dx

d

dx
 (uv) = u 

dv

dx
+ v 

du

dx

d

dx
 a u

v
b =

v 
du

dx
- u 

dv

dx

v2

d

dx
 (cot u) = -csc2 u 

du

dx

d

dx
 (sec u) = tan u sec u 

du

dx

d

dx
 (csc u) = -csc u cot u 

du

dx

d

dx
 (sin u) = cos u 

du

dx

d

dx
 (cos u) = -sin u 

du

dx

d

dx
 (tan u) = sec2 u 

du

dx

d

dx
 (sinh u) = cosh u 

du

dx

d

dx
 (cosh u) = sinh u 

du

dx

AC

u

B

682
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A

Integrals

Lxn dx =
xn +1

n + 1
+ C, n � -1

L  
dx

a + bx
=

1

b
 ln(a + bx) + C

L  
dx

a + bx2
=

1

22-ba
 ln£ a + x2-ab

a - x2-ab
§ + C,  ab 6 0

L  
x dx

a + bx2
=

1

2b
 ln(bx2 + a) + C

L  
x2 dx

a + bx2
=

x

b
-

a

b2ab
 tan-1 

x2ab
a

+ C, ab 7 0

L  
dx

a2 - x2
=

1

2a
 ln c a + x

a - x
d + C, a2 7 x2

L2a + bx dx =
2

3b
2(a + bx)3 + C

Lx2a + bx dx =
-2(2a - 3bx)2(a + bx)3

15b2
+ C

Lx22a + bx dx =
2(8a2 - 12abx + 15b2x2)2(a + bx)3

105b3
+ C

L2a2 - x2 dx =
1

2
 c x2a2 - x2 + a2 sin-1 

x
a
d + C, a 7 0

 Lx2x2
{ a2 dx =

1

3
 2(x2

{ a2)3 + C

Lx22a2 - x2 dx = -
x

4
2(a2 - x2)3

 +
a2

8
 ax2a2 - x2 + a2 sin-1 

x
a
b + C, a 7 0

L2x2
{ a2 dx =

1

2
 3x2x2

{ a2
{ a2 ln1x + 2x2

{ a22 4 + C

Lx2a2 - x2 dx = -
1

3
2(a2 - x2)3 + C

 Lx22x2
{ a2 dx =

x

4
 2(x2

{ a2)3
|

a2

8
 x2x2

{ a2

 -
a4

8
 ln1x + 2x2

{ a22 + C

L  
dx

2a + bx
=

22a + bx

b
+ C

L  
x dx

2x2
{ a2

= 2x2
{ a2 + C

L  
dx

2a + bx + cx2
=

1

1c
 ln c2a + bx + cx2

 + x1c +
b

21c
d + C,  c 7 0

 =
1

1-c
 sin-1a -2cx - b

2b2 - 4ac
b + C, c 6 0

L  sin x dx = -cos x + C

L  cos x dx = sin x + C

Lx cos(ax) dx =
1

a2
 cos(ax) +

x
a

 sin(ax) + C

Lx2 cos(ax) dx =
2x

a2
 cos(ax)

 +
a2x2 - 2

a3
 sin(ax) + C

Leax dx =
1

a
 eax + C

Lxeax dx =
eax

a2
 (ax - 1) + C

Lsinh x dx = cosh x + C

Lcosh x dx = sinh x + C



Vector AnalysisAPPENDIX

B
The following discussion provides a brief review of vector analysis. 

A more detailed treatment of these topics is given in Engineering 
Mechanics: Statics. 

Vector. A vector, A, is a quantity which has magnitude and direction, 

and adds according to the parallelogram law. As shown in Fig. B–1, 

A = B + C, where A is the resultant vector and B and C are 

component vectors.

Unit Vector. A unit vector, uA, has a magnitude of one “dimensionless” 

unit and acts in the same direction as A. It is determined by dividing A by 

its magnitude A, i.e,

 uA =
A
A

 (B–1)

684

A � B � C

B

C

Fig. B–1 
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B

Cartesian Vector Notation. The directions of the positive x, y, z 

axes are defined by the Cartesian unit vectors i, j, k, respectively.

As shown in Fig. B–2, vector A is formulated by the addition of its 

x, y, z components as

 A = A x i + A y j + A z k (B–2)

The magnitude of A is determined from

 A = 2A x
2 + A y

2 + A z
2  (B–3)

The direction of A is defined in terms of its coordinate direction angles, a, 

b, g, measured from the tail of A to the positive x, y, z axes, Fig. B–3. These 

angles are determined from the direction cosines which represent the i, j, 
k components of the unit vector uA ; i.e., from Eqs. B–1 and B–2

 uA =
A x

A
 i +

A y

A
 j +

A z

A
 k  (B–4)

so that the direction cosines are

 cos a =
A x

A
 cos b =

A y

A
  cos g =

A z

A
 (B–5)

Hence, uA = cos ai + cos bj + cos gk, and using Eq. B–3, it is seen that

 cos2 a + cos2 b + cos2 g = 1 (B–6)

The Cross Product. The cross product of two vectors A and B, 

which yields the resultant vector C, is written as

 C = A * B (B–7)

and reads C equals A “cross” B. The magnitude of C is

 C = AB sin u (B–8)

where u is the angle made between the tails of A and B (0� … u … 180�). 
The direction of C is determined by the right-hand rule, whereby the 

fingers of the right hand are curled from A to B and the thumb points in 

the direction of C, Fig. B–4. This vector is perpendicular to the plane 

containing vectors A and B.

Axi

Ayj

Azk

y

x

ji

k

A

z

Fig. B–2 

z

y
a

g

b

x

A

Fig. B–3 

C

u
B

A

Fig. B–4 
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The vector cross product is not commutative, i.e., A * B � B * A. 

Rather,

 A * B = -B * A (B–9)

The distributive law is valid; i.e.,

 A * (B + D) = A * B + A * D (B–10)

And the cross product may be multiplied by a scalar m in any manner; i.e.,

 m(A * B) = (mA) * B = A * (mB) = (A * B)m (B–11)

Equation B–7 can be used to find the cross product of any pair of 

Cartesian unit vectors. For example, to find i * j, the magnitude is 

(i)(j) sin 90� = (1)(1)(1) = 1, and its direction +k is determined from the 

right-hand rule, applied to i * j, Fig. B–2. A simple scheme shown in 

Fig. B–5 may be helpful in obtaining this and other results when the need 

arises. If the circle is constructed as shown, then “crossing” two of the 

unit vectors in a counterclockwise fashion around the circle yields a 

positive third unit vector, e.g., k * i = j. Moving clockwise, a negative 

unit vector is obtained, e.g., i * k = -j.
If A and B are expressed in Cartesian component form, then the cross 

product, Eq. B–7, may be evaluated by expanding the determinant

 C = A * B = 3 i j k
A x A y A z

Bx By Bz

3  (B–12)

which yields

 C = (A yBz - A zBy)i - (A xBz - A zBx)j + (A xBy - A yBx)k 

Recall that the cross product is used in statics to define the moment of 

a force F about point O, in which case

 MO = r * F (B–13)

where r is a position vector directed from point O to any point on the line 

of action of F.

i

kj

�

�
Fig. B–5 
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The Dot Product. The dot product of two vectors A and B, which 

yields a scalar, is defined as

 A # B = AB cos u (B–14)

and reads A “dot” B. The angle u is formed between the tails of A and B 

(0� … u … 180�).

The dot product is commutative; i.e.,

 A # B = B # A (B–15)

The distributive law is valid; i.e.,

 A # (B + D) = A # B + A # D (B–16)

And scalar multiplication can be performed in any manner, i.e.,

 m(A # B) = (mA) # B = A # (mB) = (A # B)m (B–17)

Using Eq. B–14, the dot product between any two Cartesian  

vectors can be determined. For example, i # i = (1)(1) cos 0� = 1 and 

i # j = (1)(1) cos 90� = 0.

If A and B are expressed in Cartesian component form, then the dot 

product, Eq. C–14, can be determined from

 A # B = A xBx + A yBy + A zBz  (B–18)

The dot product may be used to determine the angle u formed between 
two vectors. From Eq. B–14,

 u = cos-1aA # B
AB
b  (B–19)
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It is also possible to find the component of a vector in a given direction 

using the dot product. For example, the magnitude of the component (or 

projection) of vector A in the direction of B, Fig. B–6, is defined by 

A  cos u. From Eq. B–14, this magnitude is

 A  cos u = A # B
B

= A # uB (B–20)

where uB represents a unit vector acting in the direction of B, Fig. B–6.

Differentiation and Integration of Vector Functions.  The 

rules for differentiation and integration of the sums and products of scalar 

functions also apply to vector functions. Consider, for example, the two 

vector functions A(s) and B(s). Provided these functions are smooth and 

continuous for all s, then

 
d

ds
 (A + B) =

dA
ds

+
dB
ds

 (B–21)

 L(A + B) ds = LA ds + LB ds  (B–22)

For the cross product,

 
d

ds
 (A * B) = a dA

ds
* Bb + aA *

dB
ds
b  (B–23)

Similarly, for the dot product,

 
d

ds
 (A # B) =

dA
ds

# B + A # dB
ds

 (B–24)

A

uB

A cos u
B

u

Fig. B–6 



The Chain Rule APPENDIX 

The chain rule of calculus can be used to determine the time derivative of 

a composite function. For example, if y is a function of x and x is a function 

of t, then we can find the derivative of y with respect to t as follows

  y 
#
 =

 dy

  dt
 =

 dy

  dx
  

 dx

  dt
  (C–1)

In other words, to find y 
#
 we take the ordinary derivative (dy>dx) and 

multiply it by the time derivative (dx>dt).
If several variables are functions of time and they are multiplied 

together, then the product rule d(uv) = du v + u dv must be used along 

with the chain rule when taking the time derivatives. Here are some 

examples. 

C

689
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If y = x3 and x = t4, find  y 
$
, the second derivative of y with respect  

to time.

SOLUTION
Using the chain rule, Eq. C–1,

y
#
= 3x2x

#

To obtain the second time derivative we must use the product rule 

since x and x
#
 are both functions of time, and also, for 3x2 the chain rule 

must be applied. Thus, with u = 3x2 and v = x
#
, we have

 y
$
= [6xx

#
]x

#
+ 3x2[x

$
]

  = 3x[2x
#2 + xx

$
]

Since x = t4, then x
#
= 4t3 and x

$ = 12t2 so that

 y
$
= 3(t4)[2(4t3)2 + t4(12t2)]

 = 132t10

Note that this result can also be obtained by combining the functions, 

then taking the time derivatives, that is,

 y = x3 = (t4)3 = t12

  y
#
= 12t11

  y
$
= 132t10

EXAMPLE   C–1

EXAMPLE   C–2

If y = xex, find y
$
.

SOLUTION
Since x and ex are both functions of time the product and chain rules 

must be applied. Have u = x and v = ex.

y
#
= [x

#
]ex + x[exx

#
]

The second time derivative also requires application of the product 

and chain rules. Note that the product rule applies to the three time 

variables in the last term, i.e., x, ex, and x
#
.

 y
$
= 5[x

$
]ex + x

#
[exx]

# 6 + 5[x
#
]exx

# + x[exx
#
]x

# + xex[x
$
]6

  = ex[x
$
(1 + x) + x

# 2(2 + x)]

If x = t2 then x
#
= 2t, x

$
= 2 so that in terms in t, we have

y
$
= et2

[2(1 + t2) + 4t2(2 + t2)]C
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If the path in radial coordinates is given as r =  5u2, where u is a 

known function of time, find r
$
.

SOLUTION
First, using the chain rule then the chain and product rules where 

u = 10u and v = u
#
, we have

r = 5u2

 r
#
 =  10uu

#

r
$
 =  10[(u

#
)u

#
+ u(u

$
)]

 = 10u
#
2 + 10uu

$

EXAMPLE   C–3

EXAMPLE   C–4

If r2 = 6u3, find r
$
.

SOLUTION
Here the chain and product rules are applied as follows.

 r2 = 6u3

2rr
# = 18u2u

#

2[(r
#
)r

#
+ r(r

$
)] = 18[(2uu

#
)u

#
+ u2(u

$
)]

 r
# 2 + rr

$
= 9(2uu

#
2 + u2u

$
)

To find r
$
 at a specified value of u which is a known function of time, 

we can first find u
#
 and u

$
. Then using these values, evaluate r from  

the first equation, r
#
 from the second equation and r

$
 using the last 

equation.

C



F12–8.   a = v dv
ds

  = 120 - 0.05s221-0.1s2
 At s = 15 m,

 a = -13.1 m>s2 = 13.1 m>s2 d  Ans.

F12–9.  v = ds
dt = d

dt 10.5t32 = 1.5t2

 v = ds
dt = d

dt (108) = 0 Ans.

106

54

v (m/s)

t (s)

F12–10.  ds = v dt

 L
s

0

 ds = L
t

0

 (-4t + 80) dt

 s = -2t2 + 80t

 a = dv
dt = d

dt (-4t + 80) = -4 ft>s2 = 4 ft>s2 d
 Also,

 a = �v
�t = 0 - 80 ft>s

20 s - 0 = -4 ft>s2

20

800

s (ft)

t (s)

20

�4

a (ft/s2)

t (s)

Chapter 12

F12–1. v = v0 + act 
 10 = 35 + ac(15) 

 ac = -1.67 m>s2 = 1.67 m>s2 d  Ans.

F12–2.    s = s0 + v0t + 1
2act

2  

  0 = 0 + 15t + 1
2 (-9.81)t2 

  t = 3.06 s  Ans.

F12–3.   ds = v dt  

  L
s

0

ds = L
t

0

14t - 3t
22dt  

  s = 12t2 -  t32m 

  s = 21422  -  43 

  =  -32 m = 32 m d  Ans.

F12–4.  a = dv
dt = d

dt 10.5t3 -  8t2 
 a = 11.5t2 -  82 m>s2

 When t = 2 s,

 a = 1.51222 - 8 = -2 m>s2 = 2 m>s2 d  Ans.

F12–5.  v = ds
dt = d

dt (2t2 - 8t + 6) = (4t - 8) m>s 

 v = 0 = (4t - 8)

 t = 2 s  Ans.
 s�t=0 = 21022 - 8(0) + 6 = 6 m 

 s�t=2 = 21222 - 8(2) + 6 = -2 m  

 s�t=3 = 21322 - 8(3) + 6 = 0 m 

 (�s)Tot = 8 m + 2 m = 10 m Ans.

F12–6.  Lv dv = La ds 

 L
v

5 m>sv dv = L
s

0

(10 - 0.2s)ds 

 v = 1220s - 0.2s2 + 25 2 m>s
 At s = 10 m,

  v = 220(10) - 0.2(102   ) + 25

    = 14.3 m>s S  Ans.

F12–7.  v = L (4t2 - 2) dt

 v = 4
3 t3 - 2t + C1

 s = L 

 14
3 t3 - 2t + C12 dt

 s = 1
3 t 

4 - t 

2 + C1t + C2

 t = 0, s = -2, C2 = -2

 t = 2, s = -20, C1 = -9.67

 t = 4, s = 28.7 m Ans.

Fundamental Problems  
Partial Solutions And Answers 

692
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 0 = 150 - 10t�
 t� = 15 s

 Also,

 �v = 0 = Area under the a- t graph

 0 = (20 m>s2)(5 s) + [- (10 m>s)(t� -  5) s]

 t� = 15 s

155

100

v (m/s)

t (s)

F12–14.  0 … t … 5 s,

  ds = v dt  L
s

0

ds = L
t

0

 30t dt

  s 0 s0 = 15t2 0 t0
  s = (15t2) m
 5 s 6 t … 15 s,

 ( S+
 

)  ds = v dt; L
s

375 m

 ds = L
t

5 s

  (-15t + 225)dt

  s = (-7.5t2 + 225t - 562.5) m

  s = (-7.5)(15)2 + 225(15) - 562.5 m

  = 1125 m  Ans.
 Also,

  �s = Area under the v- t graph

  = 1
2 (150 m>s)(15 s)

  = 1125 m  Ans.

155

1125

375

s (m)

t (s)

F12–15.  L
x

0

dx = L
t

0

32t dt

 x = 116t 22 m (1)

 L
y

0

dy = L
t

0

8 dt

 t =
y

8
 (2)

F12–11.  a ds = v dv

 a = vdv
ds = 0.25s d

ds (0.25s) = 0.0625s

 a �  s=40 m = 0.0625(40 m) = 2.5 m>s2 S

40

2.5

a (m/s2)

s (m)

F12–12. For 0 … s … 10 m

 a = s

 L
v

0

v dv = L
s

0

s ds

  v = s

 at s = 10 m, v = 10 m

 For 10 m … s … 15

  a = 10

  L
v

10

v dv = L
s

10

10 ds 

  
1

2
 v2 - 50 = 10s - 100

  v = 220s - 100

  at s = 15 m

  v = 14.1 m>s Ans.

15105

10

v (m/s)

s (m)

F12–13.  0 … t 6 5 s,

 dv = a dt L
v

0

dv = L
t

0

20 dt

 v = (20t) m>s
 5 s 6 t … t�,

 ( S+
 

) dv = a dt    L
v

100 m>sdv = L
t

5 s

-10 dt

 v - 100 = (50 - 10t) m>s,
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 ax = 4 m>s2   

 Thus,

 a = 2ax
2 + ay

2 = 242 + 482 = 48.2 m>s2 Ans.

F12–20.  y
# = 0.1xx

#

 vy = 0 .1(5)(-3) = -1.5 m>s = 1.5 m>s T  Ans.

 y
$ = 0.13x# x# + xx

$4
 ay = 0.13(-3)2 + 5(-1.5)4 = 0.15 m>s2 c  Ans.

F12–21.   (vB)y
2 = (vA)y

2 + 2ay(yB - yA)

  02 = (5 m>s)2 + 2(-9.81 m>s2)(h - 0)

  h = 1.27 m  Ans.

F12–22.  yC = yA + (vA)ytAC + 1
2 ayt  2AC

 0 = 0 + (5 m>s)tAC + 1
2 (-9.81 m>s2)t 2AC  

 tAC = 1.0194 s

  (vC)y = (vA)y + aytAC

  (vC)y = 5 m>s + (-9.81 m>s2)(1.0194 s)

   = -5 m>s = 5 m>s T
  vC = 2(vC)x

2 + (vC)y
2

   = 2(8.660 m>s)2 + (5 m>s)2 = 10 m>s  Ans.

  R = xA + (vA)xtAC = 0 + (8.660 m>s)(1.0194 s)

  =  8.83 m  Ans.

F12–23.  s = s0 + v0t

 10 = 0 + vA cos 30�t

 s = s0 + v0t + 1
2 act

2

 3 = 1.5 + vA sin 30�t + 1
2 (-9.81)t 2

 t = 0.9334 s, vA = 12.4 m>s Ans.

F12–24.   s = s0 + v0t

  R14
52 = 0 + 2013

52t
  s = s0 + v0t + 1

2 act 2

  -R13
52 = 0 + 2014

52t + 1
2 (-9.81)t 2

 t = 5.10 s

 R = 76.5 m Ans.

F12–25.   xB = xA + (vA)xtAB

 12 ft = 0 + (0.8660 vA)tAB

 vAtAB = 13.856 (1)

 yB = yA + (vA)ytAB + 1
2 ay  t  2AB

 Substituting Eq. (2) into Eq. (1), get

 y = 22x Ans.

F12–16.  y = 0.75(8t) = 6t

 vx = x
# = dx

dt = d
dt (8t) = 8 m>s S

 vy = y
# = dy

dt = d
dt (6t) = 6 m>s c

 The magnitude of the particle’s velocity is

  v = 2vx
2 + vy

2 = 2(8 m>s)2 + (6 m>s)2

  = 10 m>s  Ans.

F12–17.  y = (4t 2) m

 vx = x
# = d

dt 14t 42 = 116t 32 m>s S

 vy = y
# = d

dt 14t 22 = (8t) m>s c
 When t = 0.5 s,

  v = 2vx
2 + v2

y = 2(2 m>s)2 + (4 m>s)2

  = 4.47 m>s  Ans.

 ax = v
#
x = d

dt 116t32 = 148t22 m>s2

 ay = v
#
y = d

dt (8t) = 8 m>s2

 When t = 0.5 s,

  a = 2ax
2 + ay

2 = 2(12 m>s2)2 + (8 m>s2)2

  = 14.4 m>s2  Ans.

F12–18.  y = 0.5x

 y
# = 0.5x

#

 vy = t2

 When t = 4 s,

 vx = 32 m>s  vy = 16 m>s
 v = 2vx

2 + vy
2 = 35.8 m>s Ans.

 ax = v
#
x = 4t

 ay = v
#
y = 2t

 When t = 4 s,

 ax = 16 m>s2   ay = 8 m>s2

 a = 2ax
2 + ay

2 = 2162 + 82 = 17.9 m>s2 Ans.

F12–19.  vy = y
# = 0.5 x x

# = 0.5(8)(8) = 32 m>s
 Thus,

 v = 2vx
2 + vy

2 = 33.0 m>s Ans.

  ay = v
#
y = 0.5 

#
 x2 + 0.5 x

$
x

 = 0.5(8)2 + 0.5(8)(4)

 = 48 m>s2
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  v2
B = (25 m>s)2 + 2(-0.6667 m>s2)(250 m - 0)

  vB = 17.08 m>s
 (aB)n =

v2
B

r
=

(17.08 m>s)2

300 m
= 0.9722 m>s2

  aB = 2(aB)2
t + (aB)n

2

  = 2(-0.6667 m>s2)2 + (0.9722 m>s2)2

  = 1.18 m>s2 Ans.

F12–30.  tan u = dy
dx = d

dx  1 1
24 x 22 = 1

12 x

  u = tan-11 1
12 x2 2

x=10 ft

  = tan-1110
122 = 39.81� = 39.8� d Ans.

  r =
31 + (dy>dx)243>2

� d2 y>dx2 �
=
31 + 1 1

12 x2243>2
� 1

12 �
2
x=10 ft

  = 26.468 ft

  an =
v2

r
=

(20 ft>s)2

26.468 ft
= 15.11 ft>s2

  a = 2(at)
2 + (an)

2 = 2(6 ft>s2)2 + (15.11 ft>s2)2

  = 16.3 ft>s2    Ans.

F12–31.   (aB)t = -0.001s = (-0.001)(300 m)1p2  rad2 m>s2

  = -0.4712 m>s2

  v dv = at ds

 L
vB

25 m>sv dv = L
150p m

0

-0.001s ds

 vB = 20.07 m>s
 (aB)n =

vB
2

r
=

(20.07 m>s)2

300 m
= 1.343 m>s2

  aB = 2(aB)t
2 + (aB)n

2

  = 2(-0.4712 m>s2)2 + (1.343 m>s2)2

  = 1.42 m>s2  Ans.

F12–32.  at ds = v dv

 at = v dv
ds = (0.2s)(0.2) = (0.04s) m>s2

 at = 0.04(50 m) = 2 m>s2

 v = 0.2 (50 m) = 10 m>s

 (8 - 3) ft = 0 + 0.5vAtAB + 1
2 (-32.2 ft>s2)t  2AB

 Using Eq. (1),

  5 = 0.5(13.856) -  16.1 t  2AB

  tAB = 0.3461 s

  vA = 40.0 ft>s  Ans.

F12–26.   yB = yA + (vA)ytAB + 1
2 ayt 2AB 

  -150 m = 0 + (90 m>s)tAB + 1
2 (-9.81 m>s2)t  2AB

  tAB = 19.89 s

  xB = xA + (vA)x  tAB

  R = 0 + 120 m>s(19.89 s) = 2386.37 m

  = 2.39 km  Ans.

F12–27.   at = v
#

 = dv
dt = d

dt (0.0625t 2) = (0.125t) m>s2  	 t=10 s

  = 1.25 m>s2

  an =
v2

r
=

(0.0625t2)2

40 m
= 397.656(10-6)t 44  m>s2 	  t=10 s

  = 0.9766 m>s2

  a = 2a2
t + a2

n = 2(1.25 m>s2)2 + (0.9766 m>s2)2

  = 1.59 m>s2  Ans.

F12–28.  v = 2s 	  s=10 = 20 m>s
  an =

v2

r
=

(20 m>s)2

50 m
= 8 m>s2

  at = v
dv

ds
 = 4s 	 s=10 = 40 m>s2

  a = 2at
2 + an

2 = 4140 m>s222 + 18 m>s222

 = 40.8 m>s2 Ans.

F12–29.  v2
C = v2

A + 2at(sC - sA)

 (15 m>s)2 = (25 m>s)2 + 2at(300 m - 0)

 at = -0.6667 m>s2

  v2
B = v2

A + 2at(sB - sA)
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  au = r u
$

+ 2r
#
 u
#

  = 1p 2 ft2(1 rad>s2) + 2(6 ft>s)(3 rad>s)

  = 37.57 ft>s2

  a = 2ar
2 + au

2

  = 2(-12.14 ft>s2)2 + (37.57 ft>s2)2

  = 39.5 ft>s2  Ans.

F12–36.  r = eu

 r
# = euu

#

 r
$ = euu

$
+ euu

#
2

  ar = r
$ - r u

#
2 = (euu

$
+ euu

#
2) - euu

#
2 = ep>4(4)

  = 8.77 m>s2  Ans.

  au = ru
$

+ 2 r
#
 u
#
= (euu

$
) + (2(euu

#
)u

#
) = eu(u

$
+ 2u

#
2)

  = ep>4(4 + 2(2)2)

  = 26.3 m>s2 Ans.

F12–37.   r = [0.2(1 + cos u)] m 	 u=30� = 0.3732 m

  r
# = 3 -0.2 (sin u)u

# 4  m>s 	 u=30�

  = -0.2 sin 30�(3 rad>s)

  = -0.3 m>s
 vr = r

# = -0.3 m>s
 vu = r u

#
= (0.3732 m)(3 rad>s) = 1.120 m>s

  v = 2v2
r + v2

u = 2(-0.3 m>s)2 + (1.120 m>s)2

  = 1.16 m>s Ans.

F12–38.  30 m = r sin u

 r = 1 30 m
sin u 2 = (30 csc u) m

 r = (30 csc u)  	 u=45� = 42.426 m

 r
# = -30 csc u ctn u u

#
	 u=45� = - 142.426u

# 2 m>s
 vr = r

# = - (42.426u
#
) m>s

 vu = ru
#
= (42.426u

#
) m>s

 v = 2v2
r + v2

u

 2 = 2(-42.426u
#
)2 + (42.426u

#
)2

 u
#
= 0.0333 rad>s Ans.

F12–39.  lT = 3sD + sA

 0 = 3vD + vA

 0 = 3vD + 3 m>s
 vD = -1 m>s = 1 m>s c  Ans.

 an =
v2

r
=

(10 m>s)2

500 m
= 0.2 m>s2

  a = 2at
2 + an

2 = 2(2 m>s2)2 + (0.2 m>s2)2

 = 2.01 m>s2 Ans.

F12–33.  vr = r
# = 0

 vu = ru
#
= (400u

#
) ft>s

 v = 2v2
r + v2

u

 55 ft>s = 202 + [(400u
#

  ) ft>s]2

 u
#
= 0.1375 rad>s Ans.

F12–34. r = 0.1t3  	 t=1.5 s = 0.3375 m

 r
# = 0.3t2  	 t=1.5 s = 0.675 m>s

 r
$ = 0.6t 	 t=1.5 s = 0.900 m>s2

 u = 4t3>2  	 t=1.5 s = 7.348 rad

 u
#
= 6t1>2  	 t=1.5 s = 7.348 rad>s

 u
$
= 3t-1>2  	 t=1.5 s = 2.449 rad>s2

  vr = r
# = 0.675 m>s

  vu = r u
#
= (0.3375 m)(7.348 rad>s) = 2.480 m>s

  ar = r
$
 - r u

#
2

  = (0.900 m>s2) - (0.3375 m)(7.348 rad>s)2

  = -17.325 m>s2

  au = r u
$

+ 2r
#
 u
#
= (0.3375 m)(2.449 rad>s2)

  + 2(0.675 m>s)(7.348 rad>s) = 10.747 m>s2

  v = 2vr
2 + vu

2

  = 2(0.675 m>s)2 + (2.480 m>s)2

  = 2.57 m>s  Ans.

  a = 2ar
2 + au

2

  = 2(-17.325 m>s2)2 + (10.747 m>s2)2

  = 20.4 m>s2  Ans.

F12–35.  r = 2u

 r
# = 2u

#

 r
$ = 2u

$

 At u = p>4 rad,

 r = 21p4 2 = p
2  ft

 r
# = 2(3 rad>s) = 6 ft>s

 r
$ = 2(1 rad>s) = 2 ft>s2

  ar = r
$
 -  r u

#
2 = 2 ft>s2 - 1p2  ft2(3 rad>s)2

   = -12.14 ft>s2



 FUNDAMENTAL PROBLEMS 697

F12–47.  vB = vA + vB>A
 (5i + 8.660j) = (12.99i + 7.5j) + vB>A
  vB>A = [-7.990i + 1.160j] m>s
  vB>A = 2(-7.990 m>s)2 + (1.160 m>s)2

  = 8.074 m>s  

  dAB = vB>At = (8.074 m>s)(4 s) = 32.3 m Ans.

F12–48.  vA = vB + vA>B
 -20 cos 45�i + 20 sin 45�j = 65i + vA>B
  vA>B = -79.14i + 14.14j

  vA>B = 2(-79.14)2 + (14.14)2

  = 80.4 km>h  Ans.

 aA = aB + aA>B
 

(20)2

0.1
 cos 45�i +

(20)2

0.1
 sin 45�j = 1200i + aA>B

  aA>B = 1628i + 2828j

  aA>B = 2(1628)2 + (2828)2

  = 3.26(103) km>h2  Ans.

Chapter 13

F13–1.  s = s0 + v0t + 1
2 ac t 2

  6 m = 0 + 0 + 1
2 a(3 s)2

 a = 1.333 m>s2

 �Fy = may;  NA - 20(9.81) N cos 30� = 0

 NA = 169.91 N

 �Fx = max; T - 20(9.81) N sin 30�

   -  0.3(169.91 N) = (20 kg)(1.333 m>s2)

 T = 176 N Ans.

F13–2.  (Ff)max = msNA = 0.3(245.25 N) = 73.575 N.  

Since F = 100 N 7 (Ff)max when t = 0, the crate 

will start to move immediately after F is applied.

 + c �Fy = may;  NA - 25(9.81) N = 0

  NA = 245.25 N

 +
S �Fx = max;

 10t 2 + 100 - 0.25(245.25 N) = (25 kg)a

 a = (0.4t 2 + 1.5475) m>s2

 dv = a dt

 L
v

0

dv = L
4 s

0

10.4t2 + 1.54752dt

 v = 14.7 m>s S  Ans.

F12–40.  sB + 2sA + 2h = l

 vB + 2vA = 0

 6 + 2vA = 0 vA = -3 m>s = 3 m>s c  Ans.

F12–41.  3sA + sB = l

 3vA + vB = 0

 3vA + 1.5 = 0 vA = -0.5 m>s = 0.5 m>s c  Ans.

F12–42.  lT = 4 sA + sF

 0 = 4 vA + vF

 0 = 4 vA + 3 m>s
 vA = -0.75 m>s = 0.75 m>s c  Ans.

F12–43.  sA + 2(sA - a) + (sA - sP) = l

 4sA - sP = l + 2a

 4vA - vP = 0

 4vA - (-4) = 0 

 4vA + 4 = 0  vA = -1 m>s = 1 m>s Q  Ans.

F12–44.  sC + sB = lCED (1)

 (sA - sC) + (sB - sC) + sB = lACDF

 sA + 2sB - 2sC = lACDF (2)

 Thus

 vC + vB = 0

 vA + 2vB - 2vC = 0

 Eliminating vC,

 vA + 4vB = 0

 Thus,

 4 ft>s + 4vB = 0

 vB = -1 ft>s = 1 ft>s c  Ans.

F12–45.  vB = vA + vB>A
 100i = 80j + vB>A
 vB>A = 100i - 80j

  vB>A = 2(vB>A)2
x + (vB>A)2

y

  = 2(100 km>h)2 + (-80 km>h)2

  = 128 km>h Ans.

u = tan-1J (vB>A)y

(vB>A)x
R = tan-1¢ 80 km>h

100 km>h ≤ = 38.7� c Ans.

F12–46.  vB = vA + vB>A
 (-400i - 692.82j) = (650i) + vB>A
 vB>A = [-1050i -  692.82j] km>h
  vB>A = 2(vB>A)2

x + (vB>A)2
y

  = 2(1050 km>h)2 + (692.82 km>h)2

  = 1258 km>h Ans.

u = tan-1J  
(vB>A)y

(vB>A)x 
  R = tan-1¢692.82 km>h

1050 km>h ≤ = 33.4� d Ans.
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F13–11.  �Ft = mat;  10(9.81) N cos 45� = (10 kg)at

  at = 6.94 m>s2  Ans.

 �Fn = man;

 T - 10(9.81) N sin 45� = (10 kg) 
(3 m>s)2

2 m

 T = 114 N Ans.

F13–12.  �Fn = man;

 Fn = (500 kg) 
(15 m>s)2

200 m
= 562.5 N

 �Ft = mat;

  Ft = (500 kg)(1.5 m>s2) = 750 N

  F = 2F n
2 + F t

2 = 2(562.5 N)2 + (750 N)2

  = 938 N  Ans.

F13–13.   ar = r
# # - ru

#
  2 = 0 - (1.5 m + (8 m)sin 45�)u

#
  2

  = (-7.157 u
#

  2) m>s2

 �Fz = maz;

 T cos 45� - m(9.81) = m(0) T = 13.87 m

 �Fr = mar;

 - (13.87m) sin 45� = m(-7.157 u
#

  2)

 u
#
= 1.17 rad>s Ans.

F13–14.  u = pt2 	 t=0.5 s = (p>4) rad

 u
#
= 2pt 	 t=0.5 s = p rad>s

 u
# #
= 2p rad>s2

 r = 0.6 sin u 0 u=p>4 rad = 0.4243 m

 r
# = 0.6 (cos u)u

#
 	 u=p>4 rad = 1.3329 m>s

r
# #
= 0.6 [(cos u)u

# #
- (sinu)u

#
  2   ] 	 u=p>4 rad = -1.5216 m>s2

 ar = r
# #

 - ru
#

  2 = -1.5216 m>s2 - (0.4243 m)(p rad>s)2

  = -5.7089 m>s2

  au = ru
# #

+ 2r
#
 u
#
= 0.4243 m(2p rad>s2)

   + 2(1.3329 m>s)(p rad>s)

  = 11.0404 m>s2

 �Fr = mar;

  Fcos 45� - N cos 45� -0.2(9.81)cos 45�

  = 0.2(-5.7089)

 �Fu = mau;

  F sin 45� + N sin 45� -0.2(9.81)sin 45�

  = 0.2(11.0404)

 N = 2.37 N    F = 2.72 N Ans.

F13–3.  +S �Fx = max;

 14
52500 N - (500s)N = (10 kg)a

  a = (40 - 50s) m>s2

  v dv = a ds

  L
v

0

v dv = L
0.5 m

0

(40 - 50s) ds

 v2

2 	 v0 = 140s - 25s22  	 0.5 m
0

 v = 5.24 m>s Ans.

F13–4.  +S �Fx = max  100(s + 1) N = (2000 kg)a

  a = (0.05(s + 1)) m>s2

  v dv = a ds

  L
v

0

v dv = L
10 m

0

0.05(s + 1) ds

 v = 2.45 m>s
F13–5.   Fsp = k(l - l0) = (200 N>m)(0.5 m - 0.3 m)

  = 40 N

  u = tan-11 0.3 m
0.4 m2 = 36.86�

 +
S �Fx = max;

 100 N - (40 N)cos 36.86� = (25 kg)a

 a = 2.72 m>s2

F13–6.  Blocks A and B:

 +
S �Fx = max; 6 = 70

32.2 a; a = 2.76 ft>s2

 Check if slipping occurs between A and B.

 +
S �Fx = max; 6 - F = 20

32.2 (2.76);

 F = 4.29 lb 6 0.4(20) = 8 lb

 aA = aB = 2.76 ft>s2 Ans.

F13–7.   �Fn = m v
2

r ; (0.3)m(9.81) = m v
2

2

  v = 2.43 m>s  Ans.

F13–8.  + T �Fn = man; m(32.2) = m1 v2

2502
 v = 89.7 ft>s Ans.

F13–9.  + T �Fn = man; 150 + Np =
150

32.2
 ¢ (120)2

400
 ≤

 Np = 17.7 lb Ans.

F13–10.  +d �Fn = man;

 Nc sin 30� + 0.2 Nc cos 30� = m 
v2

500

 + c �Fb = 0;

 Nc cos 30� - 0.2Nc sin 30� - m(32.2) = 0

 v = 119 ft>s Ans.
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 0 + 300 N(10 m) - 0.3(169.91 N) (10 m)

 - 20(9.81)N (10 m) sin 30�

 =  12 (20 kg)v2

 v = 12.3 m>s  Ans.

F14–3.  T1 + �U1 - 2 = T2

 0 + 2 c L
 15 m

 0

(600 + 2s2) N ds d - 100(9.81) N(15 m)

 = 1
2 (100 kg)v2

 v = 12.5 m>s  Ans.

F14–4.  T1 + �U1 - 2 = T2

  12 (1800 kg)(125 m>s)2 - J (50 000 N + 20 000 N)
2  (400 m) R

 = 1
2 (1800 kg)v2

 v = 8.33 m>s  Ans.

F14–5.  T1 + �U1 - 2 = T2

1
2 (10 kg)(5 m>s)2 + 100 Ns� + [10(9.81) N] s� sin 30�

     -1
2 (200 N>m)(s�)2 = 0

 s� = 2.09 m

 s = 0.6 m + 2.09 m = 2.69 m  Ans.

F14–6.  TA + �UA - B = TB

  Consider difference in cord length AC - BC, 

which is distance F moves. 

 0 + 10 lb(2(3 ft)2 + (4 ft)2 - 3 ft)

      = 1
2 1 5

32.2 slug2vB
2

 vB = 16.0 ft>s Ans.

F14–7.  S
+  �Fx = max;

 3014
52 = 20a a = 1.2 m>s2 S

 v = v0 + act

  v = 0 + 1.2(4) = 4.8 m>s
  P = F # v = F (cos u)v

  = 3014
52(4.8)

  = 115 W   Ans.

F14–8.   S
+  �Fx = max;

  10s = 20a a = 0.5s m>s2 S
 vdv = ads

 L
v

1

v dv = L
5 m

0

0.5 s ds

 v = 3.674 m>s
 P = F # v = [10(5)](3.674) = 184 W Ans.

F13–15.   r = 50e2u 	 u=p>6 rad = 350e2(p>6)4  m = 142.48 m

  r
#
 = 5012e2u u

#
 2 = 100e2u u

#
 	 u=p>6 rad

  = 3100e2(p>6)(0.05)4 = 14.248 m>s
  r

# #
   = 1001(2e2uu

#
  )u

#
 + e2u(u

# #
)  2  	 u=p>6 rad

  = 10032e2(p>6) (0.052) + e2(p>6)(0.01)4
  = 4.274 m>s2

 ar = r
# #

 - ru
#

  2 = 4.274 m>s2 - 142.48 m(0.05 rad>s)2

  = 3.918 m>s2

  au = r u
# #

 + 2r 
#
u
#
= 142.48 m(0.01 rad>s2)

 + 2(14.248 m>s)(0.05 rad>s)

  = 2.850 m>s2

  �Fr = mar;

  Fr = (2000 kg)(3.918 m>s2) = 7836.55 N

  �Fu = mau;

  Fu = (2000 kg)(2.850 m>s2) = 5699.31 N

  F = 2Fr
2 + Fu

2

  = 2(7836.55 N)2 + (5699.31 N)2

  = 9689.87 N = 9.69 kN

F13–16.  r = (0.6 cos 2u) m 	 u=0� = [0.6 cos 2(0�)] m = 0.6 m

  r
#
 = (-1.2 sin2uu

#
) m>s 	 u=0�

  = 3 -1.2 sin2(0�)(-3)4  m>s = 0

  r
# #
= -1.21sin2uu

# #
+ 2cos2uu

#
22 m>s2	u=0�

  = -21.6 m>s2

 Thus,

  ar = r
# # - r u

#
  2 = -21.6 m>s2 - 0.6 m(-3 rad>s)2

  = -27 m>s2

 au = r u
# #

+ 2r
#
 u
#
= 0.6 m(0) + 2(0)(-3 rad>s) = 0

 �Fu = mau;  F - 0.2(9.81) N = 0.2 kg(0)

  F = 1.96 N c  Ans.

Chapter 14

F14–1.  T1 + �U1 - 2 = T2

 0 + 14
52(500 N)(0.5 m) - 1

2 (500 N>m)(0.5 m)2

 = 1
2 (10 kg)v2

 v = 5.24 m>s  Ans.

F14–2.  �Fy = may; NA - 20(9.81) N cos 30� = 0

 NA = 169.91 N

 T1 + �U1 - 2 = T2
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F14–15.  T1 + V1 = T2 + V2

 1
2 (2)(4)2 + 1

2 (30)(2 - 1)2

 = 1
2 (2)(v)2 - 2(9.81)(1) + 1

2 (30) (25 - 1)2

 v = 5.26 m>s Ans.

F14–16.  TA + VA = TB + VB

 0 + 1
2 (4)(2.5 - 0.5)2 + 5(2.5)

 = 1
2 1 5

32.22vB
2 + 1

2 (4) (1 - 0.5)2

 vB = 16.0 ft>s Ans.

F14–17.  T1 + V1 = T2 + V2

 1
2mv1

2 + mgy1 + 1
2ks1

2

 = 1
2 mv2

2 + mgy2 + 1
2 ks2

2

 [0] + [0] + [0] = [0] +

 [-75 lb(5 ft + s)] + 3211
2 (1000 lb>ft)s22

 + 1
2 (1500 lb>ft)(s - 0.25 ft)24

 s = sA = sC = 0.580 ft Ans.

 Also,

 sB = 0.5803 ft - 0.25 ft = 0.330 ft Ans.

F14–18.  TA + VA = TB + VB

 1
2 mv2

A + 11
2 ksA

2 + mgyA 2
 = 1

2  mvB
2 + 11

2 ksB
2 + mgyB2

1
2  (4 kg)(2 m>s)2 + 1

2 (400 N>m)(0.1 m - 0.2 m)2 + 0

 =  12  (4 kg)vB
2 + 1

2 (400 N>m)(2(0.4 m)2 + (0.3 m)2

 -  0.2 m)2 +   [4(9.81) N](- (0.1 m + 0.3 m))

 vB = 1.962 m>s = 1.96 m>s Ans.

Chapter 15
F15–1.  (+

S) m(v1)x + � L
 t2

t1
Fx dt = m(v2)x

 (0.5 kg)(25 m>s) cos 45� - L 

 Fx dt

 =  (0.5 kg)(10 m>s)cos 30�

 Ix = L 

 Fx dt = 4.509 N # s

 (+ c) m(v1)y + � L
 t2

t1
Fy dt = m(v2)y

 - (0.5 kg)(25 m>s)sin 45�+ LFy dt

       = (0.5 kg)(10 m>s)sin 30�

 Iy = L 

 Fy dt = 11.339 N # s

   I = L 

 F dt = 2(4.509 N # s)2 + (11.339 N # s)2 

         = 12.2 N # s Ans.

F14–9.  (+ c)�Fy = 0;

 T1 - 100 lb = 0  T1 = 100 lb

 (+ c)�Fy = 0;

 100 lb + 100 lb - T2 = 0 T2 = 200 lb

  Pout = TB # vB = (200 lb)(3 ft>s) = 1.091 hp

  Pin =
Pout

e
=

1.091 hp

0.8
= 1.36 hp  Ans.

F14–10.  �Fy� = may�;  N - 20(9.81) cos 30� = 20(0)

 N = 169.91 N

 �Fx� = max�;  

 F - 20(9.81) sin 30� - 0.2(169.91) = 0

 F = 132.08 N

 P = F # v = 132.08(5) = 660 W Ans.

F14–11.  + c �Fy = may;

 T - 50(9.81) = 50(0) T = 490.5 N

  Pout = T # v = 490.5(1.5) = 735.75 W

 Also, for a point on the other cable

 Pout = a490.5

2
b  (1.5)(2) = 735.75 W

  Pin =
Pout

e
=

735.75

0.8
= 920 W  Ans.

F14–12.  2sA + sP = l

 2aA + aP = 0

 2aA + 6 = 0

 aA = -3 m>s2 = 3 m>s2 c
 �Fy = may;   TA -  490.5 N = (50 kg)(3 m>s2)

 TA = 640.5 N

 Pout = T # v = (640.5 N>2)(12) = 3843 W

 Pin =
Pout

e
=

3843

0.8
= 4803.75 W = 4.80 kW Ans.

F14–13.  TA + VA = TB + VB

 0 + 2(9.81)(1.5) = 1
2 (2)(vB)2 + 0

 vB = 5.42 m>s Ans.

 + c �Fn = man; T - 2(9.81) = 2a (5.42)2

1.5
b

 T = 58.9 N Ans.

F14–14.  TA + VA = TB + VB

 1
2 mAvA

2 + mghA = 1
2 mBvB

2 + mghB

 31
2 (2 kg)(1 m>s)24 + [2 (9.81) N(4 m)]

 = 31
2 (2 kg)vB

2 4 + [0]

 vB = 8.915 m>s = 8.92 m>s Ans.

 + c �Fn = man; NB - 2(9.81) N

 = (2 kg)a (8.915 m>s)2 

2 m
b

 NB = 99.1 N Ans.
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F15–7.  ( S+
 

) mA (vA)1 + mB (vB)1 = mA (vA)2 + mB (vB)2

 (20(103) kg)(3 m>s) + (15(103) kg)(-1.5 m>s)

 = (20(103) kg)(vA)2 + (15(103) kg)(2 m>s)

 (vA)2 = 0.375 m>s S  Ans.

 ( S+
 

) m(vB)1 + � L
 t 2

 t1
F dt = m(vB)2

 (15(103) kg)(-1.5 m>s) + Favg (0.5 s)

     = (15(103) kg)(2 m>s)

 Favg = 105(103) N = 105 kN Ans.

F15–8.  ( S+
 

) mp [(vp)1]x + mc[(v)1]x = (mp + mc)v2

 531014
524 + 0 = (5 + 20)v2

 v2 = 1.6 m>s Ans.

F15–9.  T1 + V1 = T2 + V2

 1
2 mA (vA)1

2 + (Vg)1 = 1
2 mA (yA)2

2 + (Vg)2

 1
2 (5)(5)2 + 5(9.81)(1.5) = 1

2 (5)(vA)2
2 + 0

 (vA)2 = 7.378 m>s
 ( d+

 

) mA (vA)2 + mB (vB)2 = (mA + mB)v

 5(7.378) + 0 = (5 + 8)v

 v = 2.84 m>s Ans.

F15–10.  ( S+
 

) mA (vA)1 + mB (vB)1 = mA (vA)2 + mB (vB)2

 0 + 0 = 10(vA)2 + 15(vB)2 (1)

 T1 + V1 = T2 + V2

 1
2 mA (vA)1

2 + 1
2 mB (vB)1

2 + (V  e)1

 = 1
2 mA (vA)2

2 + 1
2 mB (vB)2

2 + (Ve)2

 0 + 0 + 1
2 3511032 4 10.222

 = 1
2 (10)(vA)2

2 + 1
2 (15)(vB)2

2 + 0

 5(vA)2
2 + 7.5 (vB)2

2 = 100 (2)

 Solving Eqs. (1) and (2),

 (vB)2 = 2.31 m>s S  Ans.

 (vA)2 = - 3.464 m>s = 3.46 m>s d  Ans.

F15–11.  ( d+
 

)  mA (vA)1 + mB (vB)1 = (mA + mB)v2

  0 + 10(15) = (15 + 10)v2

 v2 = 6 m>s
 T1 + V1 = T2 + V2

 1
2 (mA + mB)v2

2 + (Ve)2 = 1
2 (mA + mB)v3

2 + (Ve)3

 1
2 (15 + 10)1622 + 0 = 0 + 1

2 310110324smax
2

 smax = 0.3 m = 300 mm Ans.

F15–2.  (+ c) m(v1)y + � L
 t 2

 t1
 Fy dt = m(v2)y

 0 + N(4 s) + (100 lb)(4 s)sin 30�

     - (150 lb)(4 s) = 0 

 N = 100 lb

 ( S+ ) m(v1)x + � L
 t 2

 t1
 Fx dt = m(v2)x

 0 + (100 lb)(4 s)cos 30� - 0.2(100 lb)(4 s)

      = 1 150
32.2 slug2v

 v = 57.2 ft>s Ans.

F15–3.  Time to start motion,

+ c �Fy = 0; N - 25(9.81) N = 0 N = 245.25 N

S+  �Fx = 0; 20t2 - 0.3(245.25 N) = 0 t = 1.918 s

 ( S+ ) m(v1)x + � L
 t 2

 t1
 Fx dt = m(v2)x

0 + L
 4 s

 1.918 s

  20t2 dt - (0.25(245.25 N))(4 s - 1.918 s)

     = (25 kg)v
 v = 10.1 m>s Ans.

F15–4.  ( S+
 

) m(v1)x + � L
 t 2

 t1
 Fx dt = m(v2)x

 (1500 kg)(0) + 31
2 (6000 N)(2 s) + (6000 N)(6 s - 2 s)4

      = (1500 kg) v

 v = 20 m>s Ans.

F15–5.  SUV and trailer,

 m(v1)x + � L
 t 2

 t1
 Fx dt = m(v2)x

 0 + (9000 N)(20 s) = (1500 kg + 2500 kg)v

 v = 45.0 m>s Ans.

 Trailer,

 m(v1)x + � L
 t 2

 t1
 Fx dt = m(v2)x

 0 + T(20 s) = (1500 kg)(45.0 m>s)

 T = 3375 N = 3.375 kN Ans.

F15–6.  Block B:

 (+ T) mv1 + LF dt = mv2

 0 + 8(5) - T(5) = 8
32.2 (1)

 T = 7.95 lb Ans.

 Block A:

 (S
+ ) mv1 + L  F dt = mv2

 0 + 7.95(5) - mk (10)(5) = 10
32.2 (1)

 mk = 0.789 Ans.
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 ( d+
 

)   e =
(vB)3 - (vA)3

(vA)2 - (vB)2

 0.6 =
(vB)3 - (vA)3

25.87 ft>s - 0

 (vB)3 - (vA)3 = 15.52 (2)

 Solving Eqs. (1) and (2), yields

 (vB)3 = 11.3 ft>s d

 (vA)3 = -4.23 ft>s = 4.23 ft>s S  Ans.

F15–16.  (+ c)  m[(vb)1]y = m[(vb)2]y

 [(vb )2]y = [(vb)1]y = (20 m>s) sin30� = 10 m>s c

 ( S+
 

)   e =
(vw)2 - [(vb)2]x

[(vb)1]x-  (vw)1

 0.75 =
0 - [(vb)2]x

(20 m>s)cos 30�-  0

 [(vb)2]x = -  12.99 m>s = 12.99 m>s d

  (vb)2 = 2[(vb)2]x
2 +  [(vb)2]y

2

  = 2(12.99 m>s)2 + (10 m>s)2

  = 16.4 m>s  Ans.

 u = tan-1a [(vb)2]y

[(vb)2]x
b = tan- 1a 10 m>s

12.99 m>s b
  = 37.6� Ans.

F15–17.   �m(vx)1 = �m(vx)2

  0 + 0 = 2 (1) + 11 (vBx)2

 (vBx)2 = - 0.1818 m>s
 �m(vy)1 = �m(vy)2

 2 (3) + 0 = 0 + 11 (vBy)2

 (vBy)2 = 0.545 m>s
  (vB)2 = 3(-0.1818)2 + (0.545)2

  = 0.575 m>s Ans.

F15–18. +Q
 

  1 (3)13
52 -  1 (4)14

52
  =  1 (vB )2x +  1 (vA )2x

 +Q
 

 0.5 = 3(vA)2x -  (vB)2x4 > 3(3)13
52 -  ( -4)14

524
 Solving,

 1vA22x = 0.550 m>s, 1vB22x = -1.95  m>s
 Disc A,

   + a -114213
52 = 11vA22y

 1vA22y = -2.40  m>s

F15–12.  ( S+
 

) 0 + 0 = mp (vp)x - mcvc

 0 = (20 kg) (vp)x - (250 kg)vc

 (vp)x = 12.5 vc (1)

 vp = vc + vp>c
 (vp)x i + (vp)y j = -vc i + [(400 m>s) cos 30�i

 + (400 m>s) sin 30�j]

 (vp)x i + (vp)y j = (346.41 - vc)i + 200j

 (vp)x = 346.41 - vc

 (vp)y = 200 m>s
 (vp)x = 320.75 m>s vc = 25.66 m>s
  vp = 2(vp)x

2 + (vp)y
2

  = 2(320.75 m>s)2 + (200 m>s)2

  = 378 m>s  Ans.

F15–13.  ( S+
 

)  e =
(vB)2 - (vA)2

(vA)1 - (vB)1

  =
(9 m>s) - (1 m>s)

(8 m>s) - (-2 m>s)
= 0.8

F15–14.  ( S+
 

) mA (vA)1 + mB (vB)1 = mA (vA)2 + mB (vB)2

 [15(103) kg](5 m>s) + [25(103)](-7 m>s)

 = [15(103) kg](vA)2 + [25(103)](vB)2

 15(vA)2 + 25(vB)2 = -100 (1)

 Using the coefficient of restitution equation,

 ( S+
 

) e =
(vB)2 - (vA)2

(vA)1 - (vB)1

 0.6 =
(vB)2 - (vA)2

5 m>s - (-7 m>s)

 (vB)2 - (vA)2 = 7.2 (2)

 Solving,

 (vB)2 = 0.2 m>s S  Ans.

 (vA)2 = -7 m>s = 7 m>s d  Ans.

F15–15.  T1 + V1 = T2 + V2

 1
2 m(vA)1

2 + mg(hA)1 = 1
2 m(vA)2

2 + mg(hA)2

 1
21 30

32.2 slug2(5 ft>s)2 + (30 lb)(10ft)

 = 1
21 30

32.2 slug2(vA)2
2 + 0

 (vA)2 = 25.87 ft>s d

 ( d+
 

) mA(vA)2 + mB(vB)2 = mA(vA)3 + mB(vB)3

 1 30
 32.2 slug2(25.87 ft>s) + 0

 = 1 30
32.2 slug2(vA)3 + 1 80

32.2 slug2(vB)3

 30(vA)3 + 80(vB)3 = 775.95 (1)
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F16–2. dv
 du = 2(0.005u) = (0.01u)

 a = v dvdu = 10.005 u22(0.01u) = 50110-62u3 rad>s2

 When u = 20 rev(2p rad>1 rev) = 40p rad,

  a = 350110-62(40p)34  rad>s2

  = 99.22 rad>s2 = 99.2 rad>s2    Ans.

F16–3. v = 4u1>2
 150 rad>s = 4 u1>2
 u = 1406.25 rad

  dt = du
 v

  L
t

0

dt = L
u

1 rad

du

4u1>2
  t 	 t0 = 1

2 u1>2 	  

u
1 rad

  t = 1
2 u1>2 - 1

2

  t = 1
2 (1406.25)1>2 - 1

2 = 18.25 s Ans.

F16–4. v = du
dt = (1.5t2 + 15) rad>s

 a = dv
dt = (3t) rad>s2

 v = [1.5(32) + 15] rad>s = 28.5 rad>s
 a = 3(3) rad>s2 = 9 rad>s2

 v = vr = (28.5 rad>s)(0.75 ft) = 21.4 ft>s Ans.

 a = ar = (9 rad>s2 )(0.75 ft) = 6.75 ft>s2  Ans.

F16–5. v dv = a du

  L
v

2 rad>sv dv = L
u

0

0.5u du

  v
2

2 	 2 rad>sv = 0.25u2 	 u0

 v = (0.5 u 2 + 4)1/2 rad>s
 When u = 2 rev = 4p rad,

 v = [0.5(4p)2 + 4]1/2 rad>s = 9.108 rad>s
 vP = vr = (9.108 rad>s)(0.2 m) = 1.82 m>s Ans.

  (aP)t = ar =  (0.5u rad>s2 )(0.2 m) 	 u=4p rad

  = 1.257 m>s2

  (aP)n = v2r = (9.108 rad>s)2(0.2 m) = 16.59 m>s2

  ap = 2(aP)t
2 + (aP)n

2

  = 2(1.257 m>s2)2 + (16.59 m>s2)2 

  = 16.6 m>s2 Ans.

 Disc B,

   -113214
52 = 11vB22y

      1vB22y = -2.40  m>s
 1vA22 = 210.55022 + 12.4022 =  2 .46  m>s Ans.

 1vB22 = 211.9522 + 12.4022 = 3.09  m>s Ans.

F15–19.  HO = �mvd;

 HO  =  32(10)14
524(4) - 32(10)13

524(3)

    = 28 kg # m2>s
F15–20.  HP  =  �mvd;

  HP = [2(15) sin 30�](2) - [2(15) cos 30�](5)

  = -99.9 kg # m2 >s = 99.9 kg # m2>s b

F15–21.  (Hz)1 + � L 

 Mz dt = (Hz)2

 5(2)(1.5) + 5(1.5)(3) = 5v(1.5)

 v = 5 m>s Ans.

F15–22.  (Hz)1 + � L 

 Mz dt = (Hz)2

 0 + L
4 s

 0

 (10t)14
52(1.5)dt = 5v(1.5)

 v = 12.8 m>s Ans.

F15–23.  (Hz)1 + � L 

 Mz dt = (Hz)2

 0 + L
5 s

 0

 0.9t2 dt = 2v(0.6)

 v = 31.2 m>s Ans.

F15–24.  (Hz)1 + � L 

 Mz dt = (Hz)2

 0 + L
4 s

 0

 8tdt + 2(10)(0.5)(4) = 2[10v(0.5)]

 v = 10.4 m>s Ans.

Chapter 16

F16–1. u = (20 rev)12p rad
1 rev 2 = 40p rad

 v2 =  v0  2 + 2ac (u - u0)

  (30 rad>s)2 = 02 + 2ac [(40p rad) - 0]

  ac = 3.581 rad>s2 = 3.58 rad>s2 Ans.

 v = v0 + act

 30 rad>s = 0 + (3.581 rad>s2)t

 t = 8.38 s Ans.
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F16–6.  aB = aA ¢ rA

rB
≤

  = (4.5 rad>s2)1 0.075 m
0.225 m2 = 1.5 rad>s2

  vB = (vB)0 + aBt

  vB = 0 + (1.5 rad>s2)(3 s) = 4.5 rad>s
  uB = (uB)0 + (vB)0t + 1

2 aBt2

  uB = 0 + 0 + 1
2 (1.5 rad>s2)(3 s)2

  uB = 6.75 rad

  vC = vBrD = (4.5 rad>s)(0.125 m)

  = 0.5625 m>s   Ans.

  sC = uBrD = (6.75 rad)(0.125 m) = 0.84375 m

  = 844 mm  Ans.

F16–7. Vector Analysis

 vB = vA + V * rB>A
  -vB j = (3i) m>s
  + (vk) * (-1.5 cos 30�i + 1.5 sin 30�j)

  -vB j = [3 - vAB (1.5 sin 30�)]i - v(1.5 cos 30�)j

  0 = 3 - v(1.5 sin 30�)  (1)

  -vB = 0 - v(1.5 cos 30�)  (2)

 v = 4 rad>s  vB = 5.20 m>s Ans.

 Scalar Solution

 vB = vA + vB>A
 c TvB d = c 3S d + cv(1.5) e30� d
 This yields Eqs. (1) and (2).

F16–8. Vector Analysis

 vB = vA + V * rB>A
 (vB)xi + (vB)y j = 0 + (-10k) * (-0.6i + 0.6j)

 (vB )xi + (vB)y j = 6i + 6j

 (vB)x = 6 m>s and (vB)y = 6 m>s
  vB = 2(vB)2

x + (vB)2
y

  = 2(6 m>s)2 + (6 m>s)2  

  = 8.49 m>s  Ans.

 Scalar Solution

  vB = vA + vB>A
c (vB)x

S d + c (vB)y c d = c 0 d + c     45�   10 a 0.6

cos 45�
b d

S+
 

 1vB2x = 0 + 1010.6>cos 45�2 cos 45� = 6 m>s S
 + c 1vB2y = 0 + 1010.6>cos 45�2 sin 45� = 6 m>sc

a

F16–9. Vector Analysis

 vB = vA + V * rB>A
 (4 ft>s)i = (-2 ft>s)i + (-vk) * (3 ft)j

 4i = (-2 + 3v)i

 v = 2 rad>s Ans.

 Scalar Solution

  vB = vA + vB>A
  c 4

S d = c 2
d d + cv(3)

S d
 S+

 

 4 = -2 + v132;  v = 2 rad>s
F16–10. Vector Analysis

  vA = VOA * rA

  = (12 rad>s)k * (0.3 m)j

  = [-3.6i] m>s
  vB = vA + VAB * rB>A
  vB j = (-3.6 m>s)i

    + (vAB k) * (0.6 cos 30�i - 0.6 sin 30�j) m

  vB j = [vAB (0.6 sin 30�) - 3.6]i + vAB (0.6 cos 30�)j

  0 = vAB (0.6 sin 30�) - 3.6  (1)

  vB = vAB (0.6 cos 30�) (2)

 vAB = 12 rad>s vB = 6.24 m>s c  Ans.

 Scalar Solution

 vB = vA + vB>A
  cvB c d = c d

12(0.3) d + cg30�v(0.6) d
 This yields Eqs. (1) and (2).

F16–11. Vector Analysis

  vC = vB + VBC * rC>B
  vC j = (-60i) ft>s
 + (-vBCk) * (-2.5 cos 30�i + 2.5 sin 30�j) ft

 vC j = (-60)i + 2.165vBC j + 1.25vBC i

 0 = -60 + 1.25vBC (1)

 vC = 2.165 vBC (2)

 vBC = 48 rad>s Ans.

 vC = 104 ft>s
 Scalar Solution

 vC = vB + vC>B
  cvCc d = c vB

d d + cg30� v (2.5) d
 This yields Eqs. (1) and (2).
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 Also, rO>IC = 0.3 - rC>IC = 0.3 - 0.1667

 =  0.1333 m. 

 vO = vrO>IC = 9(0.1333) = 1.20 m>s Ans.

F16–17. vB = vrB>A = 6(0.2) = 1.2 m>s
 rB>IC = 0.8 tan 60� = 1.3856 m

 rC>IC = 0.8
cos 60� = 1.6 m

  vBC =
vB

rB>IC =
1.2

1.3856
= 0.8660 rad>s

  = 0.866 rad>s  Ans.

 Then,

 vC = vBC rC>IC = 0.8660(1.6) = 1.39 m>s Ans.

F16–18. vB = vAB rB>A = 10(0.2) = 2 m>s
 vC = vCD rC>D = vCD (0.2) S

 rB>IC = 0.4
cos 30� = 0.4619 m

  rC>IC = 0.4 tan 30� = 0.2309 m

  vBC =
vB

rB>IC =
2

0.4619
= 4.330 rad>s

  = 4.33 rad>s Ans.

 vC = vBC rC>IC
 vCD (0.2) = 4.330(0.2309)

 vCD = 5 rad>s Ans.

F16–19.  v =
vA 

 rA>IC 
=

6

 3
= 2 rad>s

 Vector Analysis

  aB = aA + A * rB>A - v2 rB>A
  aBi = -5j + 1ak2 *  (3i - 4j) - 22(3i - 4j)

  aBi = 14a - 122i + 13a + 112j
  aB = 4a - 12  (1)

  0 = 3a + 11  (2)

  a = -3.67 rad>s2  Ans.

  aB = -26.7 m>s2  Ans.

 Scalar Solution

 aB = aA + aB>A
 c aB

S d  =  c T  5 d  + c  a (5)   5  a
4   

3 d + c 4b
3

5
 (2)2(5) d

 This yields Eqs. (1) and (2).

F16–12. Vector Analysis

 vB = vA + V * rB>A
 -vB cos 30� i + vB sin 30� j = (-3 m>s)j +
  (-vk) * (-2 sin 45�i - 2 cos 45�j) m

  -0.8660vB i + 0.5vB j

    = -1.4142vi + (1.4142v - 3)j

 -0.8660vB = -1.4142v (1)

 0.5vB = 1.4142v - 3 (2)

 v = 5.02 rad>s vB = 8.20 m>s Ans.

 Scalar Solution

  vB = vA + vB>A
 cb30� vB d = c T  3 d + cb45� v(2) d
 This yields Eqs. (1) and (2).

F16–13. vAB =
vA 

rA>IC =
6

3
= 2 rad>s Ans.

 f = tan-1 1 2
1.5 2 = 53.13�

 rC>IC = 21322 + 12.522 - 213212.52 cos  53.13� = 2.5 m

 vC = vAB rC>IC = 2(2.5) = 5 m>s Ans.

 u = 90� -  f = 90� -  53.13� = 36.9� c Ans.

F16–14. vB = vAB rB>A = 12(0.6) = 7.2 m>s T

 vC = 0 Ans.

 vBC =
vB 

rB>IC =
7.2

1.2
= 6 rad>s Ans.

F16–15. v =
vO

rO>IC =
6

0.3
= 20 rad>s Ans.

 rA>IC = 20.32 + 0.62 = 0.6708 m

 f = tan-110.3
0.62 = 26.57�

 vA = vrA>IC = 20(0.6708) = 13.4 m>s Ans.

 u = 90� -  f = 90� -  26.57� = 63.4� a Ans.

F16–16.  The location of IC can be determined using similar 

triangles.

 
0.5 - rC>IC

3
=

rC>IC
1.5

   rC>IC = 0.1667 m

 v =
vC

rC>IC =
1.5

0.1667
= 9 rad>s Ans.
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 Scalar Analysis

 aA = aC + aA>C
 c 1.5

S d + c (aA)n

T
d = c 0.75

d d + c (aC)n

c d + ca(0.5)

S d
 + c (9)2(0.5)

T
d

 S+
 

   1.5 = -0.75 + a10.52
 a = 4.5 rad>s2

F16–23. vB = vrB>A = 12(0.3) = 3.6 m>s
 vBC =

vB

rB>IC =
3.6

1.2
= 3 rad>s

 Vector Analysis

  aB = A * rB>A - v2rB>A
  = (-6k) * (0.3i) - 122(0.3i)

  = {-43.2i - 1.8j} m>s2

 aC = aB + ABC * rC>B - v2
BCrC>B

  aC i = (-43.2i - 1.8j)

  + (aBC k) * (1.2i) - 32(1.2i)

  aC i = -54i + (1.2aBC - 1.8)j

  aC = -54 m>s2 = 54 m>s2  d  Ans.

  0 = 1.2aBC - 1.8 aBC = 1.5 rad>s2 Ans.

 Scalar Analysis

 aC = aB + aC>B
c aC

d d = c 6(0.3)

T
d + c (12)2(0.3)

d d + caBC(1.2)

c d + c (3)2(1.2)

d d
 d+    aC = 43.2 + 10.8 = 54 m>s2 d
 + c   0 = -610.32 + 1.2aBC

  aBC = 1.5 rad>s2

F16–24. vB = v rB>A = 6(0.2) = 1.2 m>s S

 rB>IC = 0.8 tan 60� = 1.3856 m

 vBC =
vB

rB>IC =
1.2

1.3856
= 0.8660 rad>s

 Vector Analysis

  aB = A * rB>A - v 2 rB>A
  = (-3k) * (0.2j) - 62 (0.2j)

  = [0.6i - 7.2j] m>s
 aC = aB + ABC * rC>B - v 2rC>B
 aC cos 30�i + aC sin 30�j

 = (0.6i - 7.2j) + (aBC k * 0.8i) - 0.86602(0.8i)

F16–20. Vector Analysis

  aA = aO + A * rA>O - v2 rA>O  

  = 1.8i + (-6k) * (0.3j) - 122 (0.3j)

  = {3.6i - 43.2j}m>s2 Ans.

 Scalar Analysis

 aA = aO + aA>O
 c (aA)x

S d + c(aA)ycR = c(6)(0.3)
S d + c(6)(0.3)

S d
 + 3 T(12)2(0.3)4
 S+

 

   1aA2x = 1.8 + 1.8 = 3.6 m>s2 S

 + c   1aA2y = -43.2 m>s2

F16–21. Using

 vO = vr; 6 = v10.32
  v = 20  rad>s
 aO = ar; 3 = a 10.32
  a = 10 rad>s2 Ans.

 Vector Analysis

  aA = aO + A * rA>O - v2rA>O
  = 3i + (-10k) * (-0.6i) -  202(-0.6i)

  = {243i + 6j} m>s2 Ans.

 Scalar Analysis

 aA = aO + aA>O
 c (aA)x

S d + c (aA)y

c d = c 3

S d + c 10(0.6)

c d + c (20)2(0.6)

S d
 S+

 

     1aA2x = 3 + 240 = 243 m>s2

 + c   1aA2y = 1010.62 = 6 m>s2 c

F16–22. 
rA>IC

3
=

0.5 - rA>IC 

1.5
;  rA>IC = 0.3333 m 

 v =
vA

rA>IC =
3

0.3333
= 9 rad>s

 Vector Analysis

 aA = aC + A * rA>C - v2 rA>C
 1.5i - (aA)n j = -0.75i + (aC)n j

 +  (-ak) * 0.5j - 92 (0.5j)

  1.5i - (aA)n j = (0.5a - 0.75)i + 3(aC)n - 40.54j
  1.5 = 0.5a - 0.75

 a = 4.5 rad>s2 Ans.
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F17–4. FA = ms NA = 0.2NA  FB = ms NB = 0.2NB

 S+
 

�Fx = m(aG)x ;

 0.2NA + 0.2NB = 100a (1)

 + c �Fy = m(aG)y;

 NA + NB - 100(9.81) = 0 (2)

 a+ �MG = 0;

 0.2NA(0.75) + NA(0.9) + 0.2NB (0.75)

 - NB(0.6) = 0 (3)

 Solving Eqs. (1), (2), and (3),

 NA = 294.3 N = 294 N

 NB = 686.7 N = 687 N

 a = 1.96 m>s2 Ans.

  Since NA is positive, the table will indeed slide 

before it tips.

F17–5. (aG)t = ar = a(1.5 m) 

 (aG)n = v2r = (5 rad>s)2(1.5 m) = 37.5 m>s2 

 �Ft = m(aG)t;  100 N = 50 kg[a(1.5 m)]

   a = 1.33 rad>s2 Ans.

 �Fn = m(aG)n;  TAB + TCD - 50(9.81) N

 = 50 kg(37.5 m>s2)

 TAB + TCD = 2365.5

 a+ �MG = 0; TCD (1 m) - TAB (1 m) = 0

 TAB = TCD = 1182.75 N = 1.18 kN Ans.

F17–6. a+ �MC = 0;

 aG = aD = aB

 Dy(0.6) - 450 = 0 Dy = 750 N Ans.

 (aG)n = v2r = 62(0.6) = 21.6 m>s2

 (aG)t = ar = a(0.6)

 + c �Ft = m(aG)t;

 750 - 50(9.81) = 50[a(0.6)]

 a = 8.65 rad>s2 Ans.

 S+ �Fn = m(aG)n;

 FAB + Dx = 50(21.6) (1)

 a+ �MG = 0;

 Dx(0.4) + 750(0.1) - FAB(0.4) = 0 (2)

 Dx = 446.25 N = 446 N Ans.

 FAB = 633.75 N = 634 N Ans.

 0.8660aC i + 0.5aC j = (0.8aBC - 7.2)j

 0.8660aC = 0 (1)

 0.5aC = 0.8aBC - 7.2 (2)

 aC = 0  aBC = 9 rad>s2 Ans.

 Scalar Analysis

 aC = aB + aC>B
 c aC

a 30�
d = c 3(0.2)

S d + c (6)2(0.2)

T
d + caBC(0.8)

c d
 + c (0.8660)2(0.8)

d d
 This yields Eqs. (1) and (2).

Chapter 17
F17–1. S+

 

 �Fx = m(aG)x; 10014
52 = 100a

 a = 0.8 m>s2 S  Ans.

 + c �Fy = m(aG)y;

 NA + NB - 10013
52 - 100(9.81) = 0 (1)

 a+  �MG = 0;

 NA(0.6) + 1001 3
52(0.7)

   - NB(0.4) - 1001 4
52(0.7) = 0 (2)

 NA = 430.4 N = 430 N Ans.

 NB = 610.6 N = 611 N Ans.

F17–2. �Fx� = m(aG)x�; 80(9.81) sin 15� = 80a

 a = 2.54 m>s2 Ans.

 �Fy� = m(aG)y�;

 NA + NB - 80(9.81) cos 15� = 0 (1)

 a+ �MG = 0;

 NA(0.5) - NB(0.5) = 0 (2)

 NA = NB = 379 N Ans.

F17–3. a+ �MA = �(Mk)A; 1013
52(7) = 20

32.2 a(3.5)

 a = 19.3 ft>s2 Ans.

 S+
 

�Fx = m(aG)x; Ax + 101 3
 52 = 20

32.2(19.32)

 Ax = 6 lb Ans.

 + c �Fy = m(aG)y; Ay - 20 + 1014
52 = 0

 Ay = 12 lb  Ans.
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F17–11. IG = 1
12ml2 = 1

12 (15 kg)(0.9 m)2 = 1.0125 kg # m2 

 (aG)n = v2rG = 0

 (aG)t = a(0.15 m)

  IO = IG + md 2OG

  = 1.0125 kg # m2 + 15 kg(0.15 m)2

  = 1.35 kg # m2

 a+ �MO = IOa;

 [15(9.81) N](0.15 m) = (1.35 kg # m2)a

 a = 16.35 rad>s2 Ans.

 + T �Ft = m(aG)t ; - Ot + 15(9.81)N

 = (15 kg)[16.35 rad>s2(0.15 m)]

 Ot = 110.36 N = 110 N Ans.

 S+ �Fn = m(aG)n;  On = 0 Ans.

F17–12. (aG)t = arG = a(0.45)

 (aG)n = v2rG = 62(0.45) = 16.2 m>s2

 IO = 1
 3 ml2 = 1

 3 (30)(0.92) = 8.1 kg # m2

 a+ �MO = IO a;

 30014
52(0.6) - 30(9.81)(0.45) = 8.1a

 a = 1.428 rad>s2 = 1.43 rad>s2 Ans.

 d+ �Fn = m(aG)n;  On + 30013
52 = 30(16.2)

 On = 306 N Ans.

 + c �Ft = m(aG)t;    Ot + 30014
52 - 30(9.81)

 = 30[1.428(0.45)]

 Ot = 73.58 N = 73.6 N Ans.

F17–13. IG = 1
12ml2 = 1

12(60)(32) = 45 kg # m2

 + c �Fy = m(aG)y;

 80 - 20 = 60aG  aG = 1 m>s2c
 a+ �MG = IGa;  80(1) + 20(0.75) = 45a

 a = 2.11 rad>s2 Ans.

F17–14. a+ �MA = (Mk)A;

 -200(0.3) = -100aG(0.3) - 4.5a

 30aG + 4.5a = 60  (1)

 aG = ar = a(0.3)   (2)

 a = 4.44 rad>s2 aG = 1.33 m>s2 S  Ans.

F17–15. + c �Fy = m(aG)y;

 N - 20(9.81) = 0 N = 196.2 N

 S+ �Fx = m(aG)x; 0.5(196.2) = 20aO

 aO = 4.905 m>s2 S  Ans.

F17–7. IO = mk2
O = 100(0.52) = 25 kg # m2

 a+ �MO = IOa;  -100(0.6) = -25a

 a = 2.4 rad>s2

 v = v0 + act

 v = 0 + 2.4(3) = 7.2 rad>s Ans.

F17–8. IO = 1
2 mr2 = 1

2 (50) (0.32) = 2.25 kg # m2

 a+ �MO = IOa;

     -9t = -2.25a  a = (4t) rad>s2 

 dv = a dt

 L
v

0

dv = L
t

0

4t dt

 v = (2t2) rad>s
 v = 2(42) = 32 rad>s Ans.

F17–9. (aG)t = arG = a(0.15)

 (aG)n = v2rG = 62(0.15) = 5.4 m>s2

  IO = IG + md2 = 1
12 (30)(0.92) + 30(0.152)

  = 2.7 kg # m2

 a+ �MO = IOa; 60 - 30(9.81)(0.15) = 2.7a

 a = 5.872 rad>s2 = 5.87 rad>s2 Ans.

 d+ �Fn = m(aG)n; On = 30(5.4) = 162 N Ans.

 + c �Ft = m(aG)t;

 Ot - 30(9.81) = 30[5.872(0.15)]

 Ot = 320.725 N = 321 N Ans.

F17–10. (aG)t = arG = a(0.3)

 (aG)n = v2rG = 102(0.3) = 30 m>s2

  IO = IG + md2 = 1
2 (30)(0.32) + 30(0.32)

  = 4.05 kg # m2

 a+ �MO = IOa;

 5013
52(0.3) + 5014

52(0.3) = 4.05a

 a = 5.185 rad>s2 = 5.19 rad>s2 Ans.

 + c �Fn = m(aG)n;

 On + 5013
52 - 30(9.81) = 30(30)

 On = 1164.3 N = 1.16kN Ans.

 S+ �Ft = m(aG)t;

 Ot + 5014
52 = 30[5.185(0.3)]

 Ot = 6.67 N Ans.
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Chapter 18

F18–1. IO = mkO
2 = 8010.422 = 12.8 kg # m2

 T1 = 0

 T2 = 1
2 IOv

2 = 1
2 (12.8)v2 = 6.4v2

 s = ur = 20(2p)(0.6) = 24p m

 T1 + �U1-2 = T2

 0 + 50(24p) = 6.4v2

 v = 24.3 rad>s Ans.

F18–2. T1 = 0

  T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

  = 1
21 50

32.2 slug2(2.5v2)
2

   + 1
2 3 1

121 50
32.2 slug2(5 ft)24v2

2

 T2 = 6.4700v2
2

 Or,

  IO = 1
3 ml2 = 1

3 1 50
32.2 slug2(5 ft)2

  = 12.9400 slug # ft2
 So that

  T2 = 1
2 IOv2

2 = 1
2 (12.9400 slug # ft2)v2

2

  = 6.4700v2
2

 T1 + �U1-2 = T2

 T1 + [-WyG + Mu] = T2

 0 + 3- (50 lb)(2.5 ft) + (100 lb # ft)(p2 ) 4
 = 6.4700v2

2

 v2 = 2.23 rad>s Ans.

F18–3. (vG)2 = v2rG>IC = v2(2.5)

 IG = 1
12 ml2 = 1

12 (50)1522 = 104.17 kg # m2

 T1 = 0

 T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

 = 1
2 (50)3v2(2.5)42 + 1

2 (104.17)v2
2 = 208.33v2

2

 UP = PsP = 600(3) = 1800 J

 UW = -Wh = -50(9.81)(2.5 - 2) = -245.25 J

 T1 + �U1-2 = T2

 0 + 1800 + (-245.25) = 208.33v2
2

 v2 = 2.732 rad>s = 2.73 rad>s Ans.

 a+ �MO = IOa;

 0.5(196.2)(0.4) - 100 = -1.8a

 a = 33.8 rad>s2 Ans.

F17–16. Sphere IG � 2
5 (20)(0.15)2 = 0.18 kg #  m2

 a+ �MIC = (Mk)IC;

 20(9.81)sin 30�(0.15) = 0.18a + (20aG)(0.15)

 0.18a + 3aG = 14.715

 aG = ar = a(0.15)

 a = 23.36 rad>s2 = 23.4 rad>s2 Ans.

 aG = 3.504 m>s2 = 3.50 m>s2 Ans.

F17–17. + c �Fy = m(aG)y;

 N - 200(9.81) = 0 N = 1962 N

 S+ �Fx = m(aG)x;

 T - 0.2(1962) = 200aG (1)

 a+ �MA = (Mk)A; 450 - 0.2(1962)(1)

 = 18a + 200aG(0.4) (2)

 (aA)t = 0  aA = (aA)n

 aG = aA + A * rG>A - v2rG>A
 aGi = -aAj + ak * (-0.4j) - v2(-0.4j)

 aGi = 0.4ai + (0.4v2 - aA)j

 aG = 0.4a (3)

 Solving Eqs. (1), (2), and (3),

 a = 1.15 rad>s2  aG = 0.461 m>s2

 T = 485 N Ans.

F17–18. S+ �Fx = m(aG)x;  0 = 12(aG)x  (aG)x = 0

 a+ �MA = (Mk)A

 -12(9.81)(0.3) = 12(aG)y(0.3) - 1
12(12)(0.6)2a

 0.36a - 3.6(aG)y = 35.316 (1)

 v = 0

 aG = aA + A * rG>A - v2rG>A
 (aG)y  j = aAi + (-ak) * (0.3i) - 0

 (aG)y j = (aA)i - 0.3 j

 aA = 0 Ans.

 (aG)y = -0.3a (2)

 Solving Eqs. (1) and (2)

  a = 24.5 rad>s2

 (aG)y = -7.36 m>s2 = 7.36 m>s2T  Ans.
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  T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

  = 1
2 (30)[v2(0.3)]2 + 1

2 (1.35)v2
2 = 2.025v2

2

 1Vg21 = Wy1 = 0

 1Vg22 = -Wy2 = -30(9.81)(0.3) = -88.29 J

  T1 + V1 = T2 + V2

  0 + 0 = 2.025v2
2 + (-88.29)

 v2 = 6.603 rad>s = 6.60 rad>s Ans.

F18–8. vO = vrO>IC = v(0.2)

 IO = mkO
2 = 5010.322 = 4.5 kg # m2

 T1 = 0

  T2 = 1
2 m(vO)2

2 + 1
2 IOv2

2

  = 1
2 (50)3v2(0.2)42 + 1

2 (4.5)v2
2

  = 3.25v2
2

  1Vg21 = Wy1 = 0

 1Vg22 = -Wy2 = -50(9.81)(6 sin 30�)

 = -1471.5J

  T1 + V1 = T2 + V2

  0 + 0 = 3.25v2
2 + (-1471.5)

 v2 = 21.28 rad>s = 21.3 rad>s Ans.

F18–9. vG = vrG = v(1.5) 

 IG = 1
12(60)1322 = 45 kg # m2

 T1 = 0

  T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

  = 1
2 (60)[v2(1.5)]2 + 1

2 (45)v2
2

  = 90v2
2

 Or, 

 T2 = 1
2 IOv2

2 = 1
2 345 + 6011.5224v2

2 = 90v2
2

 1Vg21 = Wy1 = 0

  1Vg22 = -Wy2 = -60(9.81)(1.5 sin 45�)

  = -624.30 J

 1Ve21 = 1
2 ks1

2 = 0

 1Ve22 = 1
2 ks2

2 = 1
2 (150)(3 sin 45�)2 = 337.5 J

  T1 + V1 = T2 + V2

  0 + 0 = 90v2
2 + [-624.30 + 337.5]

 v2 = 1.785 rad>s = 1.79 rad>s Ans.

F18–10. vG = vrG = v(0.75)

  IG = 1
12 (30)11.522 = 5.625 kg # m2

  T1 = 0

F18–4.  T = 1
2 mvG

2 + 1
2 IGv

2

  = 1
2 (50 kg)(0.4v)2 + 1

2 350 kg(0.3 m)24v2

  = 6.25v2 J

 Or,

  T = 1
2 IICv

2

  = 1
2 350 kg(0.3 m)2 + 50 kg(0.4 m)24v2

  = 6.25v2 J

 sG = ur = 10(2p rad)(0.4 m) = 8p m

  T1 + �U1 - 2 = T2

  T1 + P cos 30� sG = T2

  0 + (50 N)cos 30�(8p m) = 6.25v2 J

 v = 13.2 rad>s Ans.

F18–5.  IG = 1
12 ml2 = 1

12 (30)1322 = 22.5 kg # m2

  T1 = 0

  T2 = 1
2 mvG

2 + 1
2 IGv

2

  = 1
2 (30)[v(0.5)]2 + 1

2 (22.5)v2 = 15v2

 Or,

  IO = IG + md2 = 1
12 (30)1322 + 3010.522

  = 30 kg # m2

 T2 = 1
2 IOv

2 = 1
2 (30)v2 = 15v2

 s1 = ur1 = 8p(0.5) = 4p m

 s2 = ur2 = 8p(1.5) = 12p m

 UP1
= P1s1 = 30(4p) = 120p J

 UP2
= P2s2 = 20(12p) = 240p J

 UM = Mu = 20[4(2p)] = 160p J

 UW = (0 bar returns to same position)

 T1 + �U1 - 2 = T2

 0 + 120p + 240p + 160p = 15v2

 v = 10.44 rad>s = 10.4 rad>s Ans.

F18–6. vG = vr = v(0.4)

 IG = mkG
2 = 2010.322 = 1.8 kg # m2

  T1 = 0

  T2 = 1
2 mvG

2 + 1
2IGv

2

  = 1
2 (20)3v(0.4)42 + 1

2 (1.8)v2

  = 2.5v2

 UM = Mu = M1sO
r 2 = 501 20

0.42 = 2500 J

  T1 + �U1 - 2 = T2

  0 + 2500 = 2.5v2

 v = 31.62 rad>s = 31.6 rad>s Ans.

F18–7. vG = vr = v(0.3)

 IG = 1
2 mr2 = 1

2 (30)10.322 = 1.35 kg # m2

 T1 = 0
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Chapter 19
F19–1. c + IOv1 + � L

t2

t1

MO  dt = IOv2

  0 + L
4 s

0

3t2  dt = 36010.3224v2

 v2 = 11.85 rad>s = 11.9 rad>s Ans.

F19–2. c+ (HA)1 + � L
t2

t1

MAdt = (HA)2

 0 + 300(6) = 30010.422v2 + 300[v(0.6)](0.6)

 v2 = 11.54 rad>s = 11.5 rad>s Ans.

 S+
 

  m(v1)x + � L
t2

t1

Fxdt = m(v2)x

     0 + Ff  (6) = 300[11.54(0.6)]

     Ff = 346 N Ans.

F19–3. vA = vArA>IC = vA(0.15)

 a+ �MO = 0; 9 - At(0.45) = 0 At = 20 N

 a+ (HC)1 + � L
t2

t1

MC  dt = (HC)2

     0 + [20(5)](0.15)

    = 10[vA(0.15)](0.15)

      + 31010.1224vA

 vA = 46.2 rad>s Ans.

F19–4. IA = mkA
2 = 1010.0822 = 0.064 kg # m2

 IB = mkB
2 = 5010.1522 = 1.125 kg # m2

 vA = ¢ rB

rA
≤vB = ¢0.2

0.1
≤vB = 2vB

 c+  IA(vA)1 + � L
t2

t1

MA dt = IA(vA)2

 0 + 10(5) - L
5 s

0

F(0.1)dt = 0.064[2(vB)2]

 L
5 s

0

Fdt = 500 - 1.28(vB)2 (1)

 a+ IB(vB)1 + � L
t2

t1

MB dt = IB(vB)2

 0 + L
5 s

0

F(0.2)dt = 1.125(vB)2

 L
5 s

0

Fdt = 5.625(vB)2 (2)

 Equating Eqs. (1) and (2),

 500 - 1.28(vB)2 = 5.625(vB)2

 (vB)2 = 72.41 rad>s = 72.4 rad>s Ans.

  T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

  = 1
2 (30)[v(0.75)]2 + 1

2 (5.625)v2
2 = 11.25v2

2

 Or, 

  T2 = 1
2 IOv2

2 = 1
2 35.625 + 3010.75224v2

2

  = 11.25v2
2

  1Vg21 = Wy1 = 0

  1Vg22 = -Wy2 = -30(9.81)(0.75)

  = -220.725 J

 (Ve)1 = 1
2 ks1

2 = 0

 (Ve)2 = 1
2 ks2

2 = 1
2 (80)1222 + 1.52 - 0.522 = 160 J

  T1 + V1 = T2 + V2

  0 + 0 = 11.25v2
2 + (-220.725 + 160)

 v2 = 2.323 rad>s = 2.32 rad>s Ans.

F18–11. (vG)2 = v2rG>IC = v2(0.75)

 IG = 1
12 (30)11.522 = 5.625 kg # m2

 T1 = 0

  T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

  = 1
2 (30)[v2(0.75)]2 + 1

2 (5.625)v2
2 = 11.25v2

2

 1Vg21 = Wy1 = 30(9.81)(0.75 sin 45�) = 156.08 J

 1Vg22 = -Wy2 = 0

 1Ve21 = 1
2ks1

2 = 0

  (Ve)2 = 1
2 ks2

2 = 1
2 (300)(1.5 - 1.5 cos 45�)2

  = 28.95 J

    T1 + V1 = T2 + V2

  0 + (156.08 + 0) = 11.25v2
2 + (0 + 28.95)

 v2 = 3.362 rad>s = 3.36 rad>s Ans.

F18–12.  (Vg)1 = -Wy1 = - [20(9.81) N](1 m) = -196.2 J

  (Vg)2 = 0

  (Ve)1 = 1
2 ks1

2

  = 1
2(100 N>m)a2(3 m)2 + (2 m)2 - 0.5 mb2

  = 482.22 J

  (Ve)2 = 1
2 ks2

2 = 1
2 (100 N>m)(1 m - 0.5 m)2

  = 12.5 J

  T1 = 0

  T2 = 1
2 IAv

2 = 1
2 31

3 (20 kg)(2 m)24v2

  = 13.3333v2

 T1 + V1 = T2 + V2

  0 + [-196.2 J + 482.22 J]

    = 13.3333v2
2 + [0 + 12.5 J]

 v2 = 4.53 rad>s Ans.
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 0 + [(150 N)(0.2 + 0.3) m](3 s)

 = [(50 kg)(0.175 m)2 + (50 kg)(0.3 m)2 ]v2

    v2 = 37.3 rad>s Ans.

F19–6. 1+ c 2 m3 1vG214 y + � LFy dt = m3 1vG224 y

    0 + NA(3 s) - (150 lb)(3 s) = 0

    NA = 150 lb

 c+  (HIC)1 + � LMIC dt = (HIC)2

 0 + (25 lb # ft)(3 s) - [0.15(150 lb)(3 s)](0.5 ft)

 =  3 150
32.2 slug(1.25 ft)24v2 +  1 150

32.2 slug2 3v2(1 ft)4(1 ft)

 v2 = 3.46 rad>s  Ans.

F19–5. ( S+
 

) m3(vO)x41 + � LFx dt = m3(vO)x42

    0 + (150 N)(3 s) + FA(3 s)

      = (50 kg)(0.3v2)

 c+ IGv1 + � LMG dt = IGv2

 0 + (150 N)(0.2 m)(3 s) - FA(0.3 m)(3 s)

    = [(50 kg)(0.175 m)2] v2

    v2 = 37.3 rad>s Ans.

    FA = 36.53 N

 Also,

    IICv1 + � LMIC dt = IICv2



2

Chapter 12

P12–1. a) v =
ds

dt
=

d

dt
 (2t3) = 6t2 `

t =  2 s

=  24 m>s
 b) a ds = v dv,    v = 5s,    dv = 5 ds
 a ds = (5s) 5 ds

 a = 25s `
s =  1 m

= 25 m>s2

 c) a =
dv

dt
=

d

dt
 (4t + 5) = 4 m>s2

 d) v = v0 + ac t
 v = 0 + 2(2) = 4 m>s
 e)    v2 = v0

2 + 2ac(s - s0)

 v2 = (3)2 + 2(2)(4 - 0)

 v = 5  m>s
 f) a ds = v dv

 L
s2

s1

s ds = L
v

0

v dv

 s2 ` 5
4

= v2 ` v
0

 25 - 16 = v2

 v = 3 m>s
 g) s = s0 + v0 t +

1

2
 ac t

2

 s = 2 + 2(3) +
1

2
 (4)(3)2 = 26 m

 h) dv = a dt

 L
v

0
dv = L

1

0
(8t2) dt

 v = 2.67t3 ` 1
0

 = 2.67 m>s
 i) v =

ds

dt
=

d

dt
 (3t2 + 2) = 6t `

t =  2 s

= 12 m>s
 j) vavg =

�s

�t
=

6 m - (-1 m)

10 s - 0
= 0.7 m>s S

 (vsp)avg =
sT

�t
=

7 m + 14 m

10 s - 0
= 2.1 m>s

Preliminary Problems 
Dynamics Solutions

P12–2. a) v = 2t

 s = t2

 a = 2

t (s)

s (m)

4

2
t (s)

a (m/s2)

2

2

 b) s = -2t + 2

 v = -2

 a = 0

t (s)

v (m/s)

�2

1 t (s)

a (m/s2)

1

 c) a = -2

 v = -2t
 s = - t2

t (s)

v (m/s)

�4

2 t (s)

s (m)

�4

2

 d) 

 �s = L
3

0

v dt = Area =
1

2
 (2)(2) + 2(3 - 2) = 4 m

 s - 0 = 4 m, s = 4 m

 a =
dv

dt
= slope at t = 3 s, a = 0

713
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P12–6.      xB, yB, (vB)y

 xB = 0 + (60 cos 20�)(5)

 yB = 0 + (60 sin 20�)(5) +
1

2
 (-9.81)(5)2

 (vB)y = 60 sin 20� + (-9.81)(5)

P12–7. a) at = v
#
= 3 m>s2

 an =
v2

r
 =

(2)2

1
 = 4 m>s2

 a = 2(3)2 + (4)2 = 5 m>s2

 b) at = v
#
= 4 m>s2

 v2 = v2
0 + 2ac(s - s0)

 v2 = 0 + 2(4)(2 - 0)

 v = 4 m>s
 an =

v2

r
=

(4)2

2
= 8 m>s2

 c) at = 0

 r =
c 1 + ady

dx b2 d 3
2

d2y

dx2

`
x=0

=
1 + 0

4
=

1

4

 an =
v2

r
=

(2)2

1
4

= 16 m>s2

 a = 2(0)2 + (16)2 = 16 m>s2

 d) at ds = v dv

 at ds = (4s + 1)(4 ds)

 at = (16s + 4) 0 s=0 = 4 m>s2

 an =
v2

r
=

(4(0) + 1)2

2
= 0.5 m>s2

 e) at ds = v dv

 L
s

0

 2s ds = L
v

1

v dv

 s2 =
1

2
(v2 - 1)

 v = 2 2s2 + 1 `
s =  2 m

= 3 m>s
 at = v

#
= 2(2) = 4 m>s2

 an =
v2

r
=

(3)2

3
= 3 m>s2

 a = 2(4)2 + (3)2 = 5 m>s2

 f)  at = v
#
= 8t `

t =  1

= 8 m>s2

 an =
v2

r
=

(4(1)2 + 2)2

6
= 6 m>s2

 a = 2(8)2 + (6)2 = 10 m>s2 

 e) For a = 2,

 v = 2t

 When t = 2 s, v = 4 m>s.

 For a = -2,

 L
v

4

dv = L
t

2
 -2 dt

 v - 4 = -2t + 4

 v = -2t + 8

t (s)

v (m/s)

4

2 4

 f) L
v

1

v dv = L
2

0

a ds = Area

 
1

2
 v2 -

1

2
 (1)2 =

1

2
 (2)(4)

 v = 3 m>s
 g) v dv = a ds At s = 1 m, v = 2 m>s.

 a = v 
dv

ds
= v(slope) = 2(-2) = -4 m>s

P12–3. a) y = 4x2

 y
# = 8xx

#

 y
$ = (8x

#
)x

# + 8x(x
$
)

 b) y = 3ex

 y
# = 3exx

#

 y
$ = (3exx

#
)x

# + 3ex(x
$
)

 c) y = 6 sin x

 y
# = (6 cos x)x

#

 y
$ = [(-6 sin x)x

#
] x

# + (6 cos x)(x
$
)

P12–4.       yA, tAB, (vB)y

 20 = 0 + 40tAB

 0 = yA + 0 +
1

2
 (-9.81)(tAB)2

 (vB)2
y = 02 + 2(-9.81)(0 - yA)

P12–5.       xB, tAB, (vB)y

 xB = 0 + (10 cos 30�)(tAB)

 0 = 8 + (10 sin 30�)tAB +
1

2
 (-9.81)tAB

2

 (vB)2
y = 02 + 2(-9.81)(0 - 8)
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 S+
 

�Fx = max; 2.5s = 10a
   a = 2.5s
   v dv = a ds

 L
v

3

 v dv = L
8

0

 2.5s ds

 v2 - (3)2 = 2.5(8 - 0)2

 v = 13 m>s
P13–3. 

98.1 NN

5 3
4

Fs

10a

 Fs = kx = (10 N>m) (5 m - 1 m) = 40 N

 d+  �Fx = max; 
4

5
 (40 N) = 10a

 a = 3.2 m>s2

P13–4.

 

98.1 N

N

0.2N

30�

10a

 R+ �Fx = max; 98.1 sin 30� - 0.2N = 10a

 +Q�Fy = may; N - 98.1 cos 30� = 0

P13–5. a) 98.1 N

n

10an

10at

N

t 0.3N

 d+
 

�Ft = mat; -0.3N = 10at

 + T �Fn = man; 98.1 - N = 10a (6)2

10
b

 b)

 

10an

10a

n

N

t
30�

98.1 N

0.2N

Chapter 13

P13–1. a) 

300 N

500 N

5
3

4
98.1 N

N

10a

 S+
 

�Fx = max;  a4

5
b(500 N) - 300 N = 10a

 a = 10 m>s2

 S+
 

v = v0 + ac t; v = 0 + 10(2) = 20 m>s
 b) 

F � (20t) N

98.1 N

N

10a

 S+
 

�Fx = max; 20t = 10a

 a = 2t

 dv = a dt; L
v

0

dv = L
2

0

2t dt

 v = 4 m>s
P13–2.  

 a) 

 

10a
40 N 30 N

200 N

98.1 N

N

 S+
 

�Fx = max; 40 N - 30 N = 10a 

 a = 1 m>s2

 S+
 

v2 = v0
2 + 2ac(s - s0);  v

2 = (3)2 + 2(1) (8 - 0)

 v = 5 m>s
 b)

 F � (2.5s) N

98.1 N

N

10a
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Chapter 14

P14–1. a) U =
3

5
 (500 N)(2 m) = 600 J

 b) U = 0

 c) U = L
2

0

6s2 ds = 2(2)3 = 16 J

 d) U = 100 Na3

5
 (2 m)b =

3

5
 (100 N)(2 m) = 120 J

 e) U =
4

5
 (Area) =

4

5
c 1
2

 (1)(20) + (1)(20) d = 24 J

 f) U =
1

2
 (10 N>m)((3 m)2 - (1 m)2) = 40 J

 g) U = - a4

5
b(100 N)(2 m) = -160 J

P14–2. a) T =
1

2
 (10 kg)(2 m>s)2 = 20 J

 b) T =
1

2
 (10 kg)(6 m>s)2 = 180 J 

P14–3. a) V = (100 N)(2 m) = 200 J

 b) V = (100 N)(3 m) = 300 J

 c) V = 0

P14–4. a) V =
1

2
 (10 N>m)(5 m - 4 m)2 = 5 J

 b) V =
1

2
 (10 N>m)(10 m - 4 m)2 = 180 J

 c) V =
1

2
 (10 N>m)(5 m - 4 m)2 = 5 J

Chapter 15

P15–1. a) I = (100 N)(2 s) = 200 N # s b
 b) I = (200 N)(2 s) = 400 N # sT

 c) I = L
2

0

6t dt = 3(2)2 = 12 N # s R

 d) I = Area =
1

2
 (1)(20) + (2)(20) = 50 N # s Q

 e) I = (80 N)(2 s) = 160 N # s S
 f)  I = (60 N)(2 s) = 120 N # s Q

P15–2. a) L = (10 kg)(10 m>s) = 100 kg # m>sR
 b) L = (10 kg)(2 m>s) = 20 kg # m>s b
 c) L = (10 kg)(3 m>s) = 30 kg # m>s S

  R+ �Ft = mat;  98.1 sin 30� -  0.2N = 10at

 +Q �Fn = man;   N - 98.1 cos 30� = 10a (4)2

5
b

 

c) 

10an

10at

T

t 60�

98.1 N

n

 +b �Ft = mat;   98.1 cos 60� = 10at

  a+  �Fn = man;  T - 98.1 sin 60� = 10a 82

6
b

P13–6. a)

 

T

0.2Nt

98.1 N

N

10an

10at

n

b

 �Fb = 0; N - 98.1 = 0

 �Ft = mat; -0.2N = 10at

 �Fn = man; T = 10 
(8)2

4

 b)

 

98.1 N

0.3N

n

b

N

t

10an

 �Fb = 0; 0.3N - 98.1 = 0

 �Ft = mat; 0 = 0

 �Fn = man; N = 10 
v2

2
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P16–2. a) 

B

IC

r

2 m

2 m 45�

8 rad/s
vB

 r = 2(2 cos 45�)2 + (2 + 2 sin 45�)2

 b) 

8 m/s

0.4 m IC
V

0.3 m vB

 c) 

 

2 m/s

IC

vB

V

 r    �
 r    �

 vB = 2 m>s, v = 0

 d) 

IC

(2 � d)

3 m/s

4 m/s

d

V

vB

1 m

 

Chapter 16

P16–1. a) 

vB =

vB = vA vB/A (pin)�

2v�18 m/s
60�

    Also,

 -vBj = -18j
+  (-vk) * (-2 cos 60�i) - 2 sin 60�j)

 b) 
�(vB)x � (vB)y � 4(0.5) m/s4(0.5) m/s

30�

vB vA vB/A (pin)= �

    Also,

 (vB)xi + (vB)y  j = 2i

+  (-4k) * (-0.5 cos 30�i + 0.5 sin 30�j)

 c) 

vB � 6 m/s � v (5)

45� 30�

vB vA vB/A (pin)= �

    Also,

 vB cos 45�i + vB sin 45�j = 6i + (vk) * (4i - 3j)

 d) 

vB �
30�

 � v (3)6 m/s

vB vA vB/A (pin)= �

    Also,

 vBi = 6 cos 30�i + 6 sin 30�j + (vk) * (3i)

 

e)

 
vA v12 m/s (0.5 m)��

�vB vA vB/A (pin)�

(vB)x (vB)y 12 m/s (24)(0.5)�� �

v 24 rad/s�

    Also,

 (vB)xi + (vB)y  j = 12j + (24k) * (0.5j)

 

f) vB vA vB/A (pin)� �

vB 6 m/s� � v(5)

5

3

4

    Also,

 vBi = 6i + (vk) * (4i + 3j)
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 c) 

(aB)x (6)2(l)

aB � aA � aB/A (pin)

�� � �2(2) (3)2(2) a(4)

    Also,

 (aB)xi - 36j = 4i - 18j + (-ak) * (4i)

 d)   

aB � 
60�     

� a(2) � (3)2 (2)6

aB � aA � aB/A (pin)

    Also,

 aBi = -6 cos 60�i - 6 sin 60�j
 + (-ak) * (-2i) - (3)2 (-2i)

 
e)

 

aB � 8(0.5) � (4)2(0.5) �  (1.15)2(2)�a(2)

aB � aA � aB/A (pin)

30�
30�

   Also,

 -aBi = -4j + 8i + (-ak) * (-2 cos 30�i - 2 sin 30�j)
 -  (1.15)2(-2 cos 30�i - 2 sin 30�j)

 f)     

(aB)x � (aB)y � 2(0.5) � 2(0.5) � (4)2(0.5) 

aB � aA � aB/A (pin)

   Also,

 (aB)xi + (aB)y  j = -1j + (-2k) * (0.5j)
- (4)2(0.5j)

e) 

IC

IC

2 m

2 m

45�

V¿

vB

45�
vB

45�

1.5 m/s

V

 f) 

45�

105�

2 m

30�

30�

60�

IC 3 m/s

vB

P16–3. a) 

(2.12)2(2)(3)2

3
2a

aB � aA � aB/A (pin)

� � �aB  � 2 m/s2

45�45�

    Also,

 -aB  j = -2i + 3j + (-ak) * (2 sin 45�i + 2 cos 45�j)

 -  (2.12)2(2 sin 45�i + 2 cos 45�j)

 b) 

(aB)x (aB)y a(2)

aB � aA � aB/A (pin)

�� � �(2)(2) m/s2

45�

(4)2(2)
45�

Also,

 (aB)xi + (aB)y  j = 4i + (-ak) * (-2 cos 45�i + 2 sin 45�j)

 -  (4)2(-2 cos 45�i + 2 sin 45�j)
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Chapter 17

P17–1. a) 

100 N
3

4

3 m 2 m
NBNA

0.2NA

0.5 m

5

981 N

1 m

100 aG

 b) 

1.5 m

2 m

981 N

NB

NA

100 aG

 c) 

500 N
2 m

2 m

30�
981 N

NB

0.2NB

NA

2 m

2 m

30�

100 aG

 d) Ax

Ay

981 N

By

2 m 2 m

Bx

100(4)2(1)

100(aG)x
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 e)
 

Bx

Ax

ByAy

100(aG)t

100(3)2(3) 30�2 m 2 m

981 N

0.5 m

30�

 f) 

5

3

4

1.5 m

2.5 m

981 N

NB

NA

3

1.5 m

100aG

4

5

P17–2.

 

a) 

1.5 m
Ox

20 N 	 m

Oy

(100)(2)2(1.5)

1[ ]12

100(a)(1.5)

(100)(3)2

981 N

A

 

b) 

100(a)(1.5)

1[ ]12
(100)(3)2

981 N

100(4)2(1.5)

1.5 m

Ox

Oy

45�

1.5 m
60 N

1.5 m

A

 

c) 

1[ ]12
(100)(4)2981 N

53.1�

Ox

Oy

2 m

2 m 2 m

100 (2)2(2)

100(a)(2)

�

Fs � (6)(3 � 1)



 PRELIMINARY PROBLEMS 721

 d) 

Ox

Oy

2 m

100 N

981 N

2 m

[   (100)(2)2]A1
2

100(a)(2)

100(4)2(2)

 

e)

 

Ox

Oy

2 m

981 N

2 m

45�

[   (100)(2)2]a1
2

100(a)(2)

100(3)2(2)

 

f)

 
    (100)(2)2 A1
2

Ox

Oy

30 N 	 m

1 m 100(2)2(1)

98l N

1 m

100(a)(1)

[ ]

Chapter 18

P18–1.  a) T =
1

2
c 100(2)2

2
d (3)2 = 900 J

 b) T =
1

2
 (100)[2(1)]2 +

1

2
 c 1

12
 (100)(6)2 d (2)2

 = 800 J

Also,

 T =
1

2
 c 1

12
(100)(6)2 + 100(1)2 d (2)2 = 800 J

 c) T =
1

2
 (100)[2(2)]2 +

1

2
c 1
2

 (100)(2)2 d (2)2

 = 1200 J

Also,

 T =
1

2
c 1
2

(100)(2)2 + 100(2)2 d (2)2

 = 1200 J

 d) T =
1

2
 (100)[2(1.5)]2 +

1

2
 c 1

12
 (100)(3)2 d (2)2

 = 600 J

Also,

 T =
1

2
c 1

12
(100)(3)2 + 100(1.5)2 d (2)2

 = 600 J

 e) T =
1

2
 (100)[4(2)]2 +

1

2
c 1
2

(100)(2)2 d (4)2

 = 4800 J

Also,

 T =
1

2
 c 1

2
(100)(2)2 + 100(2)2 d (4)2

 = 4800 J

 f) T =
1

2
(100)[(4)(2)]2 = 3200 J

Chapter 19

P19–1. a) HG = c 1
2

 (100)(2)2 d (3) = 600 kg # m2>sb
 HO = c 1

2
 (100)(2)2 + 100(2)2 d (3)

 = 1800 kg # m2>s  b



722  DYNAMICS SOLUT IONS

 b) HG = c 1

12
 (100)(3)2 d (4) = 300 kg # m2>s b

 HO = c 1

12
(100)(3)2 + (100)(1.5)2 d (4)

 = 1200 kg # m2>sb
 c) HG = c 1

2
 (100)(2)2 d (4) = 800 kg # m2>s b

 HO = c 1
2

 (100)(2)2 + (100)(2)2 d (4)

 = 2400 kg # m2>s  b

 d) HG = c 1

12
 (100)(4)2 d 3 = 400 kg # m2>s d

 HO = c 1

12
 (100)(4)2 + (100)(1)2 d  3 

 = 700 kg # m2>s d

P19–2. a) LMO dt = a4

5
b(500)(2)(3) = 2400 N # s # mb

 b) LMO dt = c 2(20) +
1

2
 (3 - 2)(20) d 4

 = 200 N # s # m b

 c) LMO dt =
3

5 L
3

0

4(2t + 2)dt = 36 N # s # m b

 d) LMO dt = L
3

0

(30 t2)dt = 270 b



Chapter 12 

R12–1. s = t3 - 9t2 + 15t

 v =
ds

dt
= 3t2 - 18t + 15

 a =
dv

dt
= 6t - 18

 a  max occurs at t = 10 s.

 a  max = 6(10) - 18 = 42 ft>s2 Ans.
 vmax occurs when t = 10 s 

 vmax = 3(10)2 -  18(10) + 15 = 135 ft>s Ans.

R12–2. 1S+ 2 s = s0 + v0 t +
1

2
 a ct

2 

 s = 0 + 12(10) +
1

2
 (-2)(10)2

 s = 20.0 ft Ans.

R12–3. v =
ds

dt
= 1800(1 - e-0.3t)

 L
x

0

ds = L
t

0

 1800(1 - e-0.3t) dt

 s = 1800 a t +  
1

0.3
 e-0.3tb - 6000

 Thus, in t = 3 s

 s = 1800 a3 +
1

0.3
 e-0.3(3)b - 6000

 s = 1839.4 mm = 1.84 m  Ans.

R12–4. 0 … t … 5  a =
�v

�t
=

20

5
= 4 m>s2  Ans.

 5 … t … 20 a =
�v

�t
=

20 - 20

20 - 5
= 0 m>s2 Ans.

 20 … t … 30  a =
�v

�t
=

0 - 20

30 - 20
= -2 m>s2 Ans.

 At t1 = 5 s, t2 = 20 s, and t3 = 30 s,

 s1 = A1 =
1

2
 (5)(20) = 50 m Ans.

 s2 = A1 + A2 = 50 + 20(20 - 5) = 350 m Ans.

 s3 = A1 + A2 + A3 = 350

 +  
1

2
 (30 - 20)(20) = 450 m Ans.

R12–5. vA = 20i

 vB = 21.21i + 21.21j

 vC = 40i

 aAB =
�v

�t
=

21.21i + 21.21j - 20i

3

 aAB = {0.404i + 7.07j} m>s2 Ans.

 aAC =
�v

�t
=

40i - 20i
8

 aAC = {2.50i} m>s2  Ans.

R12–6. ( S+ ) s = s0 +  v0 t

 126 =  0 +  (v0)x (3.6)

 (v0)x = 35 ft>s
 ( + c ) s = s0 +  v0t +  

1

2
 act

2

 O = 0 + (v0)y (3.6) +
1

2
 (-32.2)(3.6)2

 (v0)y = 57.96 ft>s
 v0 = 2(35)2 + (57.96)2 = 67.7 ft>s Ans.

 u = tan-1a57.96

35
b = 58.9�  Ans.

R12–7. v dv = at ds

 L
v

4

v dv = L
10

0

0.05s ds

 0.5v2 - 8 =
0.05

2
 (10)2

 v = 4.583 = 4.58 m>s Ans.

 a n =
v2

r
=

(4.583)2

50
= 0.420 m>s2 

 a t = 0.05(10) = 0.5 m>s2

 a = 2(0.420)2 + (0.5)2 = 0.653 m>s2 Ans.

R12–8. dv = a dt 

 L
y

0

dv = L
t

0

0.5et dt

 v = 0.51et - 12
 When t = 2 s, v = 0.51e2 - 12 = 3.195 m>s
 = 3.19 m>s Ans.

Review Problem Solutions

 723
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 a = -  0.3429 m>s2 = 0.3429 m>s2 S

 S+ �Fx = max; F = 250(0.3429) = 85.7 N Ans.

R13–2. a + �Fy = may;  NC - 50(9.81) cos 30� = 0

 NC = 424.79

 Q + �Fx = max; 3T - 0.3(424.79) - 50(9.81)

 sin 30� = 50aC (1)

 Kinematics, 2sC + (sC -  sp) = l

 Taking two time derivatives, yields

 3aC = ap

 Thus, aC =
6

3
= 2

 Substituting into Eq. (1) and solving,

 T = 158 N Ans.

R13–3. Suppose the two blocks move together.

 Then

 50 lb =
50 + 20

32.2
 a

 a = 23 m>s2

 Then the friction force on block B is

 FB =
50

32.2
 (23) = 35.7 lb

  The maximum friction force between blocks A and 

B is

 Fmax = 0.4(20) = 8 lb 6 35.7 1b

 The blocks have different accelerations.

 Block A:

 S+ �Fx = max; 20(0.3) =
20

32.2
aA

 aA = 70.8 ft>s2 Ans.

 Block B:

 S+ �Fx = max; 20(0.3) =
50

32.2
 aB

 aB = 3.86 ft>s2 Ans.

R13–4.  Kinematics: Since the motion of the crate is 

known, its acceleration a will be determined first.

 a = v 
dv

ds
= (0.05s3>2) c (0.05) a3

2
bs1>2 d

 = 0.00375s2 m>s2

 When s = 10 m,

 a = 0.00375(102) = 0.375 m>s2 S

 When t = 2 s a t = 0.5e2 = 3.695 m>s2

  an =
v2

r
=

3.1952

5
= 2.041 m>s2

 a = 2a2
t + a2

n = 23.6952 + 2.0412

    = 4.22 m>s2 Ans.

R12–9. r = 2 m u = 5t2

 r
# = 0 u

#
= 10t

 r
$ = 0 u

$
= 10

 a = (r
$ - ru

#
2)ur + (ru

$
+ 2r

#
 u
#
)uu

 = 30 - 2(10t)24ur + [2(10) + 0]uu
 = 5-200t2 ur + 20uu6  m>s2

 When u = 30� = 30a p

180
b = 0.524 rad

 0.524 = 5t2

      t = 0.324 s

 a = 3-200(0.324)24ur + 20uu
 = 5-20.9ur + 20uu6m>s2

 a = 2(-20.9)2 +  (20)2 =  29.0 m>s2 Ans.

R12–10.    4sB + sA = l

    4vB = -vA

    4aB = -aA

    4aB = -0.2

    aB = -0.05 m>s2

 1+ T 2 vB = (vB)0 + aB t

 -8 = 0 -  (0.05)(t)

 t = 160 s Ans.

R12–11. vB = vA + vB>A
 [500 d ] = [600 cu 

75�
] + vB>A

 1 d+ 2 500 =  -600 cos 75� +  (vB>A)x

 (vB>A)x = 655.29 d

 1+c 2 0 = -  600 sin 75� + (vB>A)y

 (vB>A)y = 579.56 c

 (vB>A) = 2(655.29)2 + (579.56)2

 vB>A = 875 km>h Ans.

 u = tan-1 a579.56

655.29
b = 41.5�  b Ans.

Chapter 13

R13–1. 20 km>h =  
20(10)3

3600
= 5.556 m>s

 1 d+ 2 v2 = v2
0 + 2ac (s - s0)
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  Free-Body Diagram: The kinetic friction 

F1 = mkN = 0.2N must act to the left to oppose 

the motion of the crate which is to the right.

 Equations of Motion: Here, ay = 0. Thus,

 + c �Fy = may; N -  20(9.81) = 20(0)

 N = 196.2 N

 Using the results of N and a,

 S+ �Fx = max; T - 0.2(196.2) = 20(0.375)

 T = 46.7 N Ans.

R13–5. + a�Fn = man;  T - 30(9.81) cos u = 30av2

4
b  

 + Q�Ft =  mat; -30(9.81) sin u = 30at

 at = -9.81 sin u

 at ds = v dv Since ds = 4 du, then

 -9.81L
u

0

sin u (4 du) = L
y

4

vdv

 9.81(4) cos u ` u
0

=
1

2
 (v)2 -

1

2
 (4)2

 39.24(cos u - 1) + 8 =
1

2
 v2

  At u = 20�

 v = 3.357 m>s
 at = -3.36 m>s2 = 3.36 m>s2 b Ans.

 T = 361 N Ans.

R13–6. �Fz = maz; Nz - mg = 0   Nz = mg

 �Fx = man; 0.3(mg) = m av2

r
b

 v = 20.3gr = 20.3(32.2)(3) = 5.38 ft>s Ans.

R13–7. v =
1

8
 x2

 
dy

dx
= tan u =

1

4
x `

x=-6

= -1.5 u = -56.31�

 
d2y

dx2
=

1

4

 r =
c 1 + ady

dx
b2 d 3

2

` d2y

dx2
` =

c 1 + (-1.5)2 d 3
2

` 1
4
` = 23.436 ft

 + Q�Fn = man; N - 10 cos 56.31�

 = a 10

32.2
b a (5)2

23.436
b

 N = 5.8783 = 5.88 lb Ans.

 + R�Ft = mat;  -0.2(5.8783) + 10 sin 56.31�

  = a 10

32.2
 bat

 at = 23.0 ft>s2 Ans.

R13–8. r = 0.5 m

 r
# = 3 m>s u

#
= 6 rad>s

 r
$ = 1 m>s2 u

$
= 2 rad>s

 ar = r
$ - ru2

#
= 1 - 0.5(6)2 = -17

 au = ru
$

+ 2r
#
u
#
= 0.5(2) + 2(3)(6) = 37

 �Fr =  mar; Fr = 4(-17) = -68 N

 �Fu = mau; Nu = 4(37) = 148 N

 �Fz = maz; Nz = 4(9.81) = 0

   Nz = 39.24 N

 Fr = -68 N Ans.

 N = 2(148)2 + (39.24)2 = 153 N Ans.

Chapter 14

R14–1. + a�Fy = 0; NC -  150 cos 30� = 0

   NC = 129.9 lb

 T1 + �U1 - 2 = T2

0 + 150 sin 30�(30) - (0.3)129.9(30) =
1

2
 a 150

32.2
bv2

2

 v2 = 21.5 ft>s Ans.

R14–2. rAB = rB - rA = -4i + 8j - 9k

 T1 + �  LFds = T2

 0 + 2(10 - 1) + L
0

4

10dx + L
8

0

6y dy

 + L
1

10

2z dz =
1

2
a 2

32.2
bv2n

 vB = 47.8 ft>s Ans.

R14–3. T1 + V 1 = T2 + V 2

 0 + 1.5(10) =
1

2
 a 1.5

32.2
bv 2B

 vB = 25.4 ft>s Ans.
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R14–8. 
6

z
=
2152 + 22

15

 z = 5.95 ft

 T1 + V1 = T2 + V2

 0 + 0 =
1

2
 a 10

32.2
bv2

2 +
1

2
a 30

32.2
bv2

2

    + 10(5.95) - 30(5.95)

 v2 = 13.8 ft>s Ans.

Chapter 15

R15–1. ( + c ) m(v1)y + � LFy dt = m(v2)y

  0 + Np(t) - 58.86(t) = 0

  Np = 58.86 N

 1S+ 2 m(v1)x + � LFx dt = m(v2)x

  6(3) - 0.2(58.86)(t) = 6(1)

  t = 1.02 s Ans.

R15–2. + a�Fx = 0; NB - 50(9.81) cos 30� = 0

 NB = 424.79 N

 (+ Q) m(vx)1 + � LFx dt = m(vx)2

 50(2) + L
2

0

1300 + 1201t2dt - 0.4(424.79)(2)

       - 50(9.81) sin 30�(2) = 50v2

 v2 = 1.92 m>s Ans.

R15–3. The crate starts moving when

  F = Fr = 0.6(196.2) = 117.72 N

 From the graph since

     F =
200

5
 t. 0 … t … 5 s

 The time needed for the crate to start moving is

    t =
5

200
 (117.72) = 2.943 s

  Hence, the impulse due to F is equal to the area 

under the curve from 2.943 s … t … 10 s

 S+  m(vx)1 + � LFx dt = m(vx)2

  0 + L
5

2.943

200

5
 t dt + L

10

5

200 dt

 - (0.5)196.2(10 - 2.943) = 20v2

R14–4.  The work done by F depends upon the difference 

in the cord length AC−BC.

 TA + �UA - B = TB

0 + F32(0.3)2 + (0.3)2 - 2(0.3)2 + (0.3 - 0.15)24
 - 0.5(9.81)(0.15)

 -  
1

2
 (100)(0.15)2 =

1

2
 (0.5)(2.5)2

 F(0.0889) = 3.423

 F = 38.5 N Ans.

R14–5. ( + c ) v2 = v0
2 + 2ac(s - s0)

   (12)2 = 0 + 2ac(10 - 0)

 ac = 7.20 ft>s2

 + c �Fy = may; 2T - 50 =
50

32.2
 (7.20)

  T = 30.6 lb

 sC + (sC - sM ) = l

 vM = 2vC

 vM = 2(12) = 24 ft>s
 P0 = T # v = 30.6(24) = 734.2 lb # ft>s
 Pi =

734.2

0.74
= 992.1 lb # ft>s = 1.80 hp Ans.

R14–6. + c �Fy = m  ay; 2(30) - 50 =
50

32.2
 aB

  aB = 6.44 m>s2

 ( + c ) v2 = v2
0 + 2ac(s - s0)

  v2
B = 0 + 2(6.44)(10 - 0)

 vB = 11.349 ft>s
 2sB + sM = l

 2vB = -vM

 vM = -2(11.349) = 22.698 ft>s
 Po = F # v = 30(22.698) = 680.94 ft # lb>s
 Pi =

680.94

0.76
= 895.97 ft # lb>s

 Pi = 1.63 hp Ans.

R14–7. TA + VA = TB + VB

 0 + (0.25)(9.81)(0.6) +
1

2
 (150)(0.6 - 0.1)2

  =
1

2
 (0.25)(vB)2 +

1

2
(150)(0.4 - 0.1)2

 vB = 10.4 m>s Ans.
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 40a1

2
 t2b ` 5

2.943

+ 200(10 - 5) - 692.292 = 20v2

 634.483 = 20v2

 v2 = 31.7 m>s Ans.

R15–4.  (vA )1 = c 20(103) 
m

h
d a 1 h

3600 s
b = 5.556 m>s

 (vB )1 = c 5(103) 
m

h
d a 1 h

3600 s
b = 1.389 m>s,

 and (vC)1 = c 25(103) 
m

h
d a 1 h

3600 s
b = 6.944 m>s

 For the first case,

 1S+ 2 mA(vA)1 + mB(vB)1 = (mA + mB)v2

 10000(5.556) + 5000(1.389) = (10000 + 5000)vAB

  vAB = 4.167 m>s S
  Using the result of vAB and considering the second 

case,

 1S+ 2 (mA + mB )vAB + mC(vC)1

  = (mA + mB + mC)vABC

  (10000 + 5000)(4.167) + [-20000(6.944)]

  = (10000 + 5000 + 20000)vABC

        vABC = -2.183 m>s = 2.18 m>s d  Ans.

R15–5. 1S+ 2 mP(vP)1 + mB(vB )1 = mP(vp)2 + mB(vB )2

  0.2(900) + 15(0) = 0.2(300) + 15(vB)2

  (vB)2 = 8 m>s S  Ans.

 ( + c ) m (v1)y + � L
t2

t1

Fy  dt = m (v2)y

  15(0) + N(t) - 15(9.81)(t) = 15(0)

  N = 147.15  N

 1S+ 2 m (v1)x + � L
t2

t1

Fx  dt = m (v2)x

  15(8) + [-0.2(147.15)(t)] = 15(0)

  t = 4.077 s = 4.08 s Ans.

R15–6. 1S+ 2 �mv1 = �mv2

  3(2) + 0 = 3(vA)2 + 2(vB)2

 1S+ 2 e =
(vB)2 - (vA)2)

(vA)1 - (vB)1

  1 =
(vB)2 - (vA)2

2 - 0

 Solving

    (vA)2 = 0.400 m>s S  Ans.

    (vB)2 = 2.40 m>s S  Ans.

 Block A:

  T1 + �U1 - 2 = T2

  
1

2
 (3)(0.400)2 - 3(9.81)(0.3)dA = 0

  dA = 0.0272 m

 Block B:

  T1 + �U1 - 2 = T2

  
1

2
 (2)(2.40)2 - 2(9.81)(0.3)dB = 0

  dB = 0.9786 m

  d = dB - dA = 0.951 m Ans.

R15–7. (vA)x1
= -2 cos 40� = -1.532 m>s

 (vA)y1
= -2 sin 40� = -1.285 m>s

 ( S+ ) mA(vA)x1
+ mB(vB)x1

= mA(vA)x2

      + mB(vB)x2

     -2(1.532) + 0 = 0.2(vA)x2
 

     + 0.2(vB)x2
 (1)

 ( +S ) e =
(vref)2

(vref)1

   0.75 =
(vA)x2

- (vB)x1

1.532
 (2)

 Solving Eqs. (1) and (2)

 (vA)x2
= -0.1915 m>s

 (vB)x2
= -1.3405 m>s

 For A:

 ( + T) mA(vA)y1
= mA(vA)y2

 (vA)y2
= 1.285 m>s 

 For B:

 (+ c) mB(vB)y1
= mB(vB)y2

 (vB)y2
= 0 

 Hence (vB)2 = (vB)x2
= 1.34 m>s d          Ans.

 (vA) 2 = 2(-0.1915)2 + (1.285)2 = 1.30 m>s Ans.

 (uA)2 = tan-1a0.1915

1.285
b = 8.47�e            Ans.

R15–8. (Hz)1 + � LMzdt = (Hz)2

 (10)(2)(0.75) + 60(2)a3

5
b(0.75) +

   L
2

0

(8t2 + 5)dt = 10v(0.75)

 69 + c 8
3

t3 + 5t d
0

2

= 7.5v

 v = 13.4 m>s Ans.
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 vCi = (6k) * (0.2 cos 45�i + 0.2 sin 45�j) +
  (vk) * (0.5 cos 30�i - 0.5 sin 30�j)

 vC = -0.8485 + v(0.25)

 0 = 0.8485 + 0.433 v

 Solving

       v = 1.96 rad>sb
        vC = 1.34 m>s Ans.

R16–5. v =
2

0.08
= 25 rad>s

 a =
4

0.08
= 50 rad>s2

 aC = aA + (aC>A)n + (aC>A)t

 aC = 4j + (25)2(0.08)i + 50(0.08)j

 +S     aC cos u = 0 + 50

 +c      aC sin u = 4 + 0 + 4

 Solving, aC = 50.6 m>s2 Ans.

    u = 9.09� au Ans.

 The cylinder moves up with an acceleration

 aB = (aC)t = 50.6 sin 9.09� = 8.00 m>s2c  Ans.

R16–6. aC = aB + aC>B
 2.057 + (aC)t = 1.8 + 1.2 + aCB(0.5)

  S            T         T       d     cu 30�

 ( +S ) 2.057 = -1.2 + aCB(0.5) cos 30�

 ( + T )  (aC)t = 1.8 + aCB(0.5) sin 30�

 aCB = 7.52 rad>s2  Ans.

 (aC)t = 3.68 m>s2

 aC = 2(3.68)2 + (2.057)2 = 4.22 m>s2   Ans.

 u = tan-1a 3.68

2.057
b = 60.8�  c Ans.

 Also,

 aC = aB + aCB * rC>B - v2rC>B
 - (aC)t j +

(0.6)2

0.175
i = - (2)2(0.3)i - 6(0.3)j

 + (aCBk) * (-0.5 cos 60�i - 0.5 sin 60�j) - 0

 2.057 = -1.20 + aCB(0.433)

 - (aC)t = -1.8 - aCB(0.250)

 aCB = 7.52 rad>s2 Ans.

 at = 3.68 m>s2

 aC = 2(3.68)2 + (2.057)2 = 4.22 m>s2  Ans.

 u = tan-1a 3.68

2.057
b = 60.8�  cu Ans.

Chapter 16
R16–1. (vA)O = 60 rad>s
 aA = -1 rad>s2

 vA = (vA)O + aAt

 vA = 60 + (-1)(3) = 57 rad>s
 vA = rvA = (1)(57) = 57 ft>s = vB

 vB =
vB

r
= 57>2 = 28.5 rad>s

 vW = rCvC = (0.5)(28.5) = 14.2 ft>s Ans.

 aA = 1  

 aAt
= l(1) = 1 ft>s2

 aB =
1

2
= 0.5 rad>s2

 aW = raB = (0.5)(0.5) = 0.25 ft>s2 Ans.

R16–2. aa = 0.6uA

 uC =
0.5

0.075
= 6.667 rad

 uA(0.05) = (6.667)(0.15)

 uA = 20 rad

 adu = vdv

 L
20

0

0.6uAduA = L
vA

3

vAdvA

 0.3u2
A ` 20

0

=
1

2
v2

A ` vA

3

 120 =
1

2
v2

A - 4.5

 vA = 15.780 rad>s
 15.780(0.05) = vC(0.15)

 vC = 5.260 rad>s
 vB = 5.260(0.075) = 0.394 m>s Ans.

R16–3.  A point on the drum which is in contact with the 

board has a tangential acceleration of

     at = 0.5 m>s2

       a2 = at
2 + a2

n

 (3)2 = (0.5)2 + a2
n

       an = 2.96 m>s2

    an = v2r, v = A
2.96

0.25
= 3.44 rad>s

   vB = vr = 3.44(0.25) = 0.860 m>s Ans.

R16–4. vB = vAB * rB>A
 vC = vB + v * rC>B
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R16–7. aC = 0.5(8) = 4 m>s2

 aB = aC + aB>C
 aB = c 4

d d + c (3)2(0.5)

a 30�
d + c (0.5)(8)

f30� d
 ( +S )  (aB)x = -4 + 4.5 cos 30� + 4 sin 30�

 = 1.897 m>s2

 ( +c)  (aB)y = 0 + 4.5 sin 30� - 4 cos 30�

 = -1.214 m>s2

  aB = 2(1.897)2 + (-1.214)2

 = 2.25 m>s2 Ans.

 u = tan-1a1.214

1.897
b = 32.6� c Ans.

 Also,

 aB = aC + a * rB>C - v2rB>C
 (aB)xi + (aB)yj = -4i + (8k) * (-0. 5 cos 30�i

 -  0.5 sin 30�j) - (3)2(-0.5 cos 30�i - 0.5 sin 30�j)

 ( +S ) (aB)x = -4 + 8(0.5 sin 30�) + (3)2(0.5 cos 30�)

 = 1.897 m>s2

 ( +c) (aB)y = 0 - 8(0.5 cos 30�) + (3)2(0.5 sin 30�)

 = -1.214 m>s2

    u = tan-1a1.214

1.897
b = 32.6� c Ans.

     aB = 2(1.897)2 + (-1.214)2 = 2.25 m>s2 Ans.

R16–8. vB = 3(7) = 21 in.>s d
 vC = vB + v * rC>B
 -vCa4

5
b i - vCa3

5
bj = -21i + vk * (-5i - 12j)

 ( +S ) -0.8vC = -21 + 12v

 ( +c) -0.6vC = -5v

 Solving:

 v = 1.125 rad>s
   vC = 9.375 in.>s = 9.38 in.>s 5 3

4  Ans.

 (aB)n = (3)2(7) = 63 in.>s2T
 (aB)t = (2)(7) = 14 in.>s2 d

 aC = aB + a * rC>B - v2 rC>B
 -aCa4

5
b i - aCa3

5
bj = -14i - 63j + (ak)

 * (-5i - 12j) - (1.125)2(-5i - 12j)

 ( +S ) -0.8aC = -14 + 12a + 6.328

 ( +c) -0.6aC = -63 - 5a + 15.1875

       aC = 54.7 in.>s2 5 3
4  Ans.

         a = -3.00 rad>s2

Chapter 17

R17–1. +d �Fx = max; 50 cos 60� = 200aG (1)

   + c �Fy = may;  NA + NB - 200(9.81)

 -50 sin 60� = 0 (2)

      a + �MG = 0; -NA(0.3) + NB(0.2) +
 50 cos 60�(0.3)

   -50 sin 60�(0.6) = 0 (3)

 Solving,

      aG = 0.125 m>s2

        NA = 765.2 N

   NB = 1240 N

 At each wheel

     N 
A =
NA

2
= 383 N Ans.

     N 
B =
NB

2
= 620 N Ans.

R17–2. Curvilinear Translation:

 (aG)t = 8(3) = 24 ft>s2

 (aG)n = (5)2(3) = 75 ft>s2

 x =
�xm

�m
=

1(3) + 2(3)

6
= 1.5 ft

 + T �Fy = m(aG)y;  Ey + 6 =
6

32.2
(24) cos 30�

 +
6

32.2
(75) sin 30�

 +S �Fx = m(aG)x;   Ex =
6

32.2
(75) cos 30�

 -
6

32.2
(24) sin 30�

 a+ �MG = 0;   ME - Ey(1.5) = 0

 Ex = 9.87 lb Ans.

 Ey = 4.86 lb Ans.

 ME = 7.29 lb # ft Ans.

R17–3. (a) Rear wheel drive

 Equations of motion:

 +S �Fx = m(aG)x;     0.3NB = 1.5(10)3aG (1)

 c+ �MA = �(Mk)A; 1.5(10)3(9.81)(1.3)
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      -  NB(2.9) = -1.5(10)3aG(0.4) (2)

 Solving Eqs. (1) and (2) yields:

     NB = 6881 N = 6.88 kN

       aG = 1.38 m>s2 Ans.

R17–4. S+ �Fx = m(aG)x; 40 sin 60� + NC - a 5

13
bT = 0

 + c �Fy = m(aG)y; -40 cos 60� + 0.3NC

 -  20(9.81) +
12

13
T = 0

 a+ �MA = IAa;    40(0.120) - 0.3NC(0.120)

= c 1
2

(20)(0.120)2 da
 Solving,

 T = 218 N Ans.

 NC = 49.28 N

 a = 21.0 rad>s2 Ans.

R17–5. (aG)t = 4a

        d+ �Ft = m(aG)x; F + 20 - 5 =
30

32.2
(4a)

 c+ �MO = IOa;  20(3) + F(6) =
1

3
a 30

32.2
b(8)2a

 Solving,

   a = 12.1 rad>s2 Ans.

      F = 30.0 lb Ans.

R17–6. IO =
2

5
a 30

32.2
b(1)2 + a 30

32.2
b(3)2

 +
1

3
 a 10

32.2
b(2)2 = 9.17 slug # ft2

 x =
30(3) + 10(1)

30 + 10
= 2.5 ft

 +S �Fn = man;  Ox = 0

 + T �Ft = mat; 40 - Oy =
40

32.2
aG

 a+ �MO = IOa; 40(2.5) = 9.17a

 Kinematics

 aG = 2.5a

 Solving,

 a = 10.90 rad>s2

 aG = 27.3 ft>s2

 Ox = 0

 Oy = 6.14 lb

 Thus:

 Fo = 6.14 lb S  Ans.

R17–7. + c �Fy = m(aG)y;  NB - 20(9.81) = 0

      NB = 196.2 N

     FB = 0.1(196.2) = 19.62 N

 a+ �MIC = �(Mk)IC; 30 - 19.62(0.6)

  = 20(0.2a)(0.2) + [20(0.25)2]a

   a = 8.89 rad>s2 Ans.

R17–8. +d �Fx = m(aG)x;  0.3NA =
20

32.2
aG

 + c �Fy = m(aG)y;  NA - 20 = 0

 c+ �MG = IGa;  0.3NA(0.5)

 = c 2
5

 a 20

32.2
b(0.5)2 da

 Solving,

 NA = 20 lb

 aG = 9.66 ft>s2

 a = 48.3 rad>s2

 (a+ ) v = v0 + act

 0 = v1 - 48.3t

 v1 = 48.3t

 ( +S )  v = v0 + act

 0 = 20 - 9.66a v

48.3
b

 v = 100 rad>s Ans.

Chapter 18

R18–1.  T1 + �U1 - 2 = T2

 0 + (50)(9.81)(1.25) =
1

2
c (50)(1.75)2 dv2

2

  v2 = 2.83 rad>s Ans.

R18–2.  Kinetic Energy and Work: The mass moment inertia 

of the flywheel about its mass center is IO = mkO
2 

= 50(0.22) = 2 kg # m2. Thus, 

T =
1

2
IOv

2 =
1

2
 (2)v2 = v2

  Since the wheel is initially at rest, T1 =  0. W, Ox, 

and Oy do no work while M does positive work. 

When the wheel rotates

 u = (5 rev)a2p rad

1 rev
b = 10p, the work done by M is
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  UM = LMdu = L
10p

0

(9u1>2 + 1)du

   = (6u3>2 + u) `
0

10p

   = 1087.93 J

 Principle of Work and Energy:

      T1 + �U1 - 2 = T2

      0 + 1087.93 = v2

        v = 33.0 rad>s  Ans.

R18–3. Before braking:

T1 + �U1 - 2 = T2

                            0 + 15(9.81)(3) =
1

2
(15)v2

B +
1

2
350(0.23)24 a vB

0.15
b2

      vB = 2.58 m>s Ans.

      
sB

0.15
=

sC

0.25

 Set sB = 3 m, then sC = 5 m.

      T1 + �U1 - 2 = T2

       0 - F(5) + 15(9.81)(6) = 0

       F = 176.6 N

    N =
176.6

0.5
= 353.2 N

 Brake arm:

 a+ �MA = 0; -353.2(0.5) + P(1.25) = 0

     P = 141 N Ans.

R18–4.  
sG

0.3
=

sA

(0.5 - 0.3)

     sA = 0.6667sG

 +a�Fy = 0; NA - 60(9.81) cos 30� = 0

   NA = 509.7 N

      T1 + �U1 - 2 = T2

 0 + 60(9.81) sin 30�(sG) - 0.2(509.7)(0.6667sG)

=
1

2
360(0.3)24(6)2

   +
1

2
 (60)3(0.3)(6)42

   sG = 0.859 m Ans.

R18–5.  Conservation of Energy: Originally, both gears are 

rotating with an angular velocity of 

 v1 =
2

0.05
= 40 rad>s. After the rack has traveled

  s = 600 mm, both gears rotate with an angular 

velocity of v2 =
v2

0.05
, where v2 is the speed of the 

 rack at that moment.

 T1 + V 1 = T2 + V2

 
1

2
(6)(2)2 + 2e 1

2
34(0.03)24(40)2 f + 0

 = e 1

2
34(0.03)24 a v2

0.05
b2 f - 6(9.81)(0.6)

 v2 = 3.46 m>s Ans.

R18–6. Datum through A.

     T1 + V 1 = T2 + V 2

 
1

2
c 1
3
a 50

32.2
b(6)2 d (2)2 +

1

2
(6)(4 - 2)2

 =
1

2
c 1
3
a 50

32.2
b(6)2 dv2 +

1

2
 (6)(7 - 2)2 - 50(1.5)

  v = 2.30 rad>s Ans.

R18–7.     T1 + V 1 = T2 + V 2

 0 + 4(1.5 sin 45�) + 1(3 sin 45�)

 =
1

2
 c 1

3
a 4

32.2
b(3)2 d avC

3
b2

+
1

2
a 1

32.2
b(v C)2 + 0

  vC = 13.3 ft>s Ans.

R18–8. Datum at lowest point.

 T1 + V 1 = T2 + V 2

 
1

2
c 1
2

(40)(0.3)2 d a 4

0.3
b2

+
1

2
(40)(4)2

 + 40(9.81)d sin 30� = 0 +
1

2
 (200)d 2

 100d2 - 196.2d - 480 = 0

 Solving for the positive root,

    d = 3.38 m Ans.

Chapter 19

R19–1. IO = mkO
2 =

150

32.2
 (1.25)2 = 7.279 slug # ft2

 IOv1 + � L
t2

t1

MOdt = IOv2

 0 - L
3 s

0

10t2(1) dt = 7.279v2

 
10t3

3
` 3 s

0

= 7.279v2

 v2 = 12.4 rad>s Ans.
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 Also,

 1a  + 2 (HIC)1 + � LMICdt = (HIC)2

            0 - 30(0.5)(3) + 40(1.5)(3)

     = c 30

32.2
 (0.65)2 +

30

32.2
 (0.5)2 dv

               v = 215 rad>s Ans.

R19–6. c+ (HA)1 + � LMAdt = (HA)2

 c 30

32.2
(0.8)2 d (6) - LT dt(1.2) = c 30

32.2
(0.8)2 dvA

 c+ (HB)1 + � LMBdt = (HB)2

 0 + LT dt(0.4) = c 15

32.2
(0.6)2 dvB

 Kinematics:

         1.2vA = 0.4vB

        vB = 3vA

 Thus,

      vA = 1.70 rad>s Ans.

      vB = 5.10 rad>s Ans.

R19–7. H1 = H2

 a1

2
mr2bv1 = c 1

2
mr2 + mr2 dv2

 v2 =
1

3
v1 Ans.

R19–8. H1 = H2

 (0.940)(0.5) + (4) c  
1

12
 (20) a(0.75)2 + (0.2)2b

 + (20)(0.375 + 0.2)2 d (0.5)

 = (0.940)(v) + 4 c 1

12
(20)(0.2)2 + (20)(0.2)2 dv

 v = 3.56 rad>s Ans.

R19–3. +bm(vG)1 + � LF dt = m(vG)2

   0 + 9(9.81)(sin 30�)(3) - L
3

0

F dt = 9(vG)2 (1)

 a+ (HG)1 + � LMGdt = (HG)2 

   0 + aL
3

0

F dtb(0.3) = 39(0.225)24v2 (2)

 Since (vG)2 = 0.3v2,

  Eliminating L
3

0

F dt from Eqs. (1) and (2) and 

 solving for (vG)2 yields.

       (vG)2 = 9.42 m>s  Ans.

 Also, 

 a+ (HA)1 + � LMAdt = (HA)2

      0 + 9(9.81) sin 30�(3)(0.3) = 39(0.225)2 + 9(0.3)24v
 v = 31.39 rad>s
 v = 0.3(31.39) = 9.42 m>s Ans.

R19–4.  +d  m(vx)1 + � L
t2

t1

Fxdt = m(vx)2

  0 + 200(3) = 100(vO)2

  (vO)2 = 6 m>s Ans.

 and

  Izv1 + � L
t2

t1

Mzdt = Izv2

  0 - [200(0.4)(3)] = -9v2

  v2 = 26.7 rad>s Ans.

R19–5. ( + c ) mv1 + � LFdt = mv2

  0 + T(3) - 30(3) + 40(3) =
30

32.2
vo 

 1a+ 2 (HO)1 + � LMOdt = (HO)2

  -T(0.5)3 + 40(1)3 = c 30

32.2
(0.65)2 dv

 Kinematics,

      vo = 0.5v

 Solving,

      T = 23.5 lb

        v = 215 rad>s Ans.

            vO = 108 ft>s 



12–41. t = 7.48 s. When  t = 2.14 s,

 v = vmax = 10.7 ft>s, h = 11.4 ft.

12–42. s = 600 m. For 0 … t 6 40 s, a = 0.

 For 40 s 6 t … 80 s, a = -0.250 m>s2.

12–43. t
 = 35 s 

 For 0 … t 6 10 s, s = {300t} ft, v = 300 ft>s
 For 10 s 6 t 6 20 s,

 s = e 1

6
 t3 - 15t2 + 550t - 1167 f  ft

 v = e 1

2
 t2 - 30t + 550 f  ft>s

 For 20 s 6 t … 35 s,

 s = 5-5t2 + 350t + 1676  ft

 v = (-10t + 350) ft>s
12–45. When t = 0.1 s, s = 0.5 m and a changes from  

 100 m>s2 to -100 m>s2. When t = 0.2 s, s = 1 m.

12–46. v `
s=75 ft

= 27.4 ft>s, v `
s=125 ft

= 37.4 ft>s
12–47. For 0 … t 6 30 s, v = e 1

5
 t2 f  m>s, s = e 1

15
 t3 f  m

 For 30 … t … 60 s, v = {24t - 540} m>s,

 s = 512t2 - 540t + 7200} m

12–49. vmax = 100 m>s, t
 = 40 s

12–50. For 0 … s 6 300 ft, v = 54.90 s1>26m>s. 
 For 300 ft 6 s … 450 ft, 

 v = 5(-0.04s2 + 48s - 3600)1>26  m>s. 

 s = 200 ft when t = 5.77 s.

12–51. For 0 … t 6 60 s, s = e 1

20
 t2 f  m, a = 0.1 m>s2.

 For 60 s 6 t 6 120 s, s = {6t - 180} m, a = 0.

 For 120 s 6 t … 180 s, s = e 1

30
 t2 - 2t + 300 f  m,

 a = 0.0667 m>s2.

12–53. At t = 8 s, a = 0 and s = 30 m. 

 At t = 12 s, a = -1 m>s2 and s = 48 m.

12–54. For 0 … t 6 5 s, s = 50.2t36  m,

 a = {1.2t} m>s2

 For 5 s 6 t … 15 s, s = e 1

4
 (90t - 3t2 - 275) f  m

 a = -1.5 m>s2, 

 At t = 15 s, s = 100 m, vavg = 6.67 m>s
12–55. t
 = 33.3 s, s � t=5 s = 550 ft, s � t=15 s = 1500 ft, 

 s � t=20 s = 1800 ft, s � t=33.3 s = 2067 ft

12–57. For 0 … s 6 100 ft, v = eA 1

50
 (800s - s2) f  ft>s

 For 100 ft 6 s … 150 ft, 

 v = e 1

5
 2-3s2 + 900s - 25 000 f  ft>s

Chapter 12
12–1. s = 80.7 m

12–2. s = 20 ft

12–3. a = -24 m>s2, �s = -880 m, sT = 912 m

12–5. sT = 8 m, vavg = 2.67 m>s
12–6. s�  t=6 s = -27.0 ft, stot = 69.0 ft

12–7. vavg = 0, (vsp)avg = 3 m>s, a `
t=6 s

= 2 m>s2

12–9. v = 32 m>s, s = 67 m, d = 66 m

12–10. v = 1.29 m>s
12–11. vavg = 0.222 m>s, (vsp)avg = 2.22 m>s
12–13. Normal: d = 517 ft, drunk: d = 616 ft

12–14. v = 165 ft>s, a = 48 ft>s2, sT = 450 ft,  

 vavg = 25.0 ft>s, (vsp)avg = 45.0 ft>s
12–15. v = a2kt +

1

v2
0

b - 1>2
, s =

1

k
c a2kt +

1

v2
0

b1>2
-

1

v0

d
12–17. d = 16.9 ft

12–18. t = 5.62 s

12–19. s = 28.4 km

12–21. s = 123 ft, a = 2.99 ft>s2

12–22. h = 314 m, v = 72.5 m>s
12–23. v = (20e -2t) m>s, a = ( -40e -2t) m>s2, 
 s = 10(1 - e-2t) m

12–25. (a) v = 45.5 m>s, (b) v max = 100 m>s
12–26. (a) s = -30.5 m,

 (b) sTot = 56.0 m,

 (c) v = 10 m>s
12–27. t = 0.549 avf

g
b

12–29. h = 20.4 m, t = 2 s

12–30. s = 54.0 m

12–31. s =
v0

k
 (1 -  e- kt), a = -kv0e

- kt

12–33. v = 11.2 km>s
12–34. v = -RB

2g0(y0 - y)

(R + y)(R + y0)
, vimp = 3.02 km>s

12–35. t
 = 27.3 s. 

 When t = 27.3 s, v = 13.7 ft>s.

12–37. �s = 1.11 km

12–38. a� t=0 = -4 m>s2, a � t=2 s = 0, 

 a� t=4 s = 4 m>s2, v � t=0 = 3 m>s, 

 v � t=2 s = -1 m>s, v � t=4 s = 3 m>s
12–39. s = 2 sin ap

5
 tb + 4, v =

2p

5
 cos ap

5
 tb ,

 a = -
2p2

25
 sin ap

5
 tb

Answers to Selected Problems
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12–105. tA = 0.553 s, x = 3.46 m

12–106. R = 19.0 m, t = 2.48 s

12–107. u1 = 24.9� c, u2 = 85.2� a
12–109. u = 76.0�, vA = 49.8 ft>s, h = 39.7 ft

12–110. v = 63.2 ft>s
12–111. v = 38.7 m>s
12–113. v = 4.40 m>s, at = 5.04 m>s2, an = 1.39 m>s2

12–114. at = 8.66 ft>s2, r = 1280 ft

12–115. v = 97.2 ft>s, a = 42.6 ft>s2

12–117. When cars A and B are side by side, t = 55.7 s.

 When cars A and B are 90� apart, t = 27.8 s.

12–118. t = 66.4 s

12–119. h = 5.99 Mm

12–121. a = 2.75 m>s2

12–122. a = 1.68 m>s2

12–123. v = 1.5 m>s, a = 0.117 m>s2

12–125. v = 43.0 m>s, a = 6.52 m>s2

12–126. v = 105 ft>s, a = 22.7 ft>s2

12–127. at = 3.62 m>s2, r = 29.6 m

12–129. t = 7.00 s, s = 98.0 m

12–130. a = 7.42 ft>s2

12–131. a = 2.36 m>s2

12–133. a = 3.05 m>s2

12–134. a = 0.763 m>s2

12–135. a = 0.952 m>s2

12–137. y = -0.0766x2, v = 8.37 m>s, 

 an = 9.38 m>s2, at = 2.88 m>s2

12–138. vB = 19.1 m>s, a = 8.22 m>s2, f = 17.3� 
 up from negative- t axis

12–139. amin = 3.09 m>s2

12–141. (an)A = g = 32.2 ft>s2, (at)A = 0, 

 rA = 699 ft, (an)B = 14.0 ft>s2, 

 (at)B = 29.0 ft>s2, rB = 8.51(103) ft

12–142. t = 1.21 s

12–143. amax =
v2a

b2

12–145.  d = 11.0 m, aA = 19.0 m>s2, aB = 12.8 m>s2

12–146. t = 2.51 s, aA = 22.2 m>s2, aB = 65.1 m>s2

12–147. u = 10.6�

12–149. a = 0.511 m>s2

12–150. a = 0.309 m>s2

12–151. a = 322 mm>s2, u = 26.6� g
12–153. vn = 0, vt = 7.21 m>s,  

 an = 0.555 m>s2, at = 2.77 m>s2

12–154. a = 7.48 ft>s2

12–155. a = 14.3 in.>s2

12–157. vr = 5.44 ft>s, vu = 87.0 ft>s,  

 ar = -1386 ft>s2, au = 261 ft>s2

12–158. v = 464 ft>s, a = 43.2(103) ft>s2

12–159. v = 5-14.2ur - 24.0u z6  m>s
 a = 5-3.61ur - 6.00u z6  m>s2

12–58. For 0 … t 6 15 s, v = e 1

2
t2 f  

m>s, s = e 1

6
 t3 f  

m. 

 For 15 s 6 t … 40 s, 

 v = {20t - 187.5 m>s},  

 s = {10t2 - 187.5t + 1125} m

12–59. sT = 980 m

12–61. When t = 5 s, sB = 62.5 m. 

 When t = 10 s, vA = (vA)max = 40 m>s and 

 sA = 200 m.  

 When t = 15 s, sA = 400 m and sB = 312.5 m. 

 �s = sA - sB = 87.5 m

12–62. v = {5 - 6t} ft>s, a = -6 ft>s2

12–63. For 0 … t 6 5 s,  s = 52t26  m and a = 4 m>s2. 
 For 5 s 6 t 6 20 s, s = {20t - 50} m and a = 0. 

 For 20 s 6 t … 30 s, s = 52t2 - 60t + 7506  m  

 and a = 4 m>s2.

12–65. v = 354 ft>s, t = 5.32 s

12–66. When s = 100 m, t = 10 s. 

 When s = 400 m, t = 16.9 s.  

 a� s=100 m = 4 m>s2, a� s=400 m = 16 m>s2

12–67. At s = 100 s, a changes from amax = 1.5 ft>s2  

 to amin = -0.6 ft>s2.

12–69. a = 5.31 m>s2, a = 53.0� 
 b = 37.0�, g = 90.0�
12–70. �r = 56i + 4j6  m

12–71. (4 ft, 2 ft, 6 ft)

12–73. (5.15 ft, 1.33 ft)

12–74. r = {11i + 2j + 21k} ft

12–75. (vsp)avg = 4.28 m>s
12–77. v = 8.55 ft>s, a = 5.82 m>s2

12–78. v = 1003 m>s, a = 103 m>s2

12–79. d = 4.00  ft, a = 37.8 ft>s2

12–81.  (vBC)avg = {3.88i + 6.72j} m>s
12–82. v = 2c2 k2 + b2, a = ck2

12–83. v = 10.4 m>s, a = 38.5 m>s2

12–85. d = 204 m, v = 41.8 m>s a = 4.66 m>s2

12–86. u = 58.3�, (v0) min = 9.76 m>s
12–87. u = 76.0�, vA = 49.8 ft>s, h = 39.7 ft

12–89. Rmax = 10.2 m, u = 45�
12–90. R = 8.83 m

12–91. (13.3 ft, -7.09 ft)

12–93. d = 166 ft

12–94. t = 3.57 s, vB = 67.4 ft>s
12–95. vA = 36.7 ft>s, h = 11.5 ft

12–97. vA = 19.4 m>s, vB = 40.4 m>s
12–98. vA = 39.7 ft>s, s = 6.11 ft

12–99. vB = 160 m>s, hB = 427 m, 

 hC = 1.08 km, R = 2.98 km

12–101. vmin = 0.838 m>s, vmax = 1.76 m>s
12–102. uA = 11.6�, t = 0.408 s, uB = 11.6� c
12–103. uA = 78.4�, t = 2.00 s, uB = 78.4� c
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12–209. vB = 8 ft>sT , aB = 6.80 ft>s2 c
12–210. vA = 2.5 ft>sc,  aA = 2.44 ft>s2c
12–211. vB = 2.40 m>s c , aB = 3.25 m>s2 c
12–213. vA = 4 ft>s
12–214. vA>B = 13.4 m>s, uv = 31.7� d
 aA>B = 4.32 m>s2, ua = 79.0� c
12–215. vA = 10.0 m>s d , aA = 46.0 m>s2 d
12–217. vC = 1.2 m>sc , aC = 0.512 m>s2c
12–218. vB>A = 1044 km>h, u = 54.5�a
12–219. vB/A = 28.5 mi>h, uv = 44.5� a, 

 aB/A = 3418 mi>h2, ua = 80.6�a
12–221. vB = 13.5 ft>s, u = 84.8°, t = 1.85 min

12–222. vw = 58.3 km>h, u = 59.0� b
12–223. vA/B = 15.7 m>s, u = 7.11� d, t = 38.1 s

12–225. vA/B = 98.4 ft>s, uv = 67.6� d, 

 aA>B = 19.8 ft>s2, ua = 57.4�a
12–226. vr>m = 16.6 km>h, u = 25.0°c
12–227. vB>A = 20.5 m>s, uv = 43.1� d
 aB>A = 4.92 m>s2, ua = 6.04� d
12–229. vr = 34.6 km>hT
12–230. vm = 4.87 ft>s, t = 10.3 s

12–231. vw/s = 19.9 m>s, u = 74.0� d
12–233. Yes, he can catch the ball. 

12–234. vB = 5.75 m>s, vC/B = 17.8 m>s,  

 u = 76.2� c, aC>B = 9.81 m>s2T
12–235. vB>A = 11.2 m>s, u = 50.3�

Chapter 13
13–1. s = 97.4 ft

13–2. T = 5.98 kip

13–3. v = 3.36 m>s, s = 5.04 m

13–5. F = 6.37 N

13–6. v = 59.8 ft>s
13–7. v = 60.7 ft>s
13–9. t = 2.04 s

13–10. s = 8.49 m

13–11. t = 0.249 s

13–13. aA = 9.66 ft>s2 d , aB = 15.0 ft>s2 S
13–14. T = 11.25 kN, F = 33.75 kN

13–15. Ax = 685 N, Ay = 1.19 kN, MA = 4.74 kN # m

13–17. a =
1

2
 (1 - mk) g

13–18. R = 5.30 ft, tAC = 1.82 s

13–19. R = 5.08 ft, tAC = 1.48 s

13–21. u = 22.6�
13–22. vB = 5.70 m>s c
13–23. v = 3.62 m>sc  

13–25. R = 2.45 m, tAB = 1.72 s

13–26. R = {150t} N

13–27. t = 2.11 s

13–29. v = 2.01 ft>s

12–161. vr = -2 sin t, vu =  cos t, 

 ar = -
5

2
 cos t, au = -2 sin t

12–162. vr = aeat, vu = eat, 

 ar = eat(a2-1), au = 2aeat

12–163. vr = 0, vu = 10 ft>s, 

 ar = -0.25 ft>s2, au = -3.20 ft>s2

12–165. a
#
= ( r

%
- 3r

#
u2
#
 - 3ru

#
u
$
)ur 

 +  (3r
#
 u
$

+ r
#
 u
$

+ 3r 
$
u
#

- r u
#
3)uu + (z

%
)uz

12–166. a = 48.3  in.>s2

12–167. vr = 1.20 m>s, vu = 1.26 m>s, 

 ar = -3.77 m>s2, au = 7.20 m>s2

12–169. vr = 1.20 m>s, vu = 1.50 m>s, 

 ar = -4.50 m>s2, au = 7.20 m>s2

12–170. vr = 16.0 ft>s, vu = 1.94 ft>s, 

 ar = 7.76 ft>s2, au = 1.94 ft>s2

12–171. v = 4.24 m>s, a = 17.6 m>s2

12–173. a = 27.8 m>s2

12–174. vr = 0, vu = 12 ft>s, 

 ar = -216 ft>s2, au = 0

12–175. v = 12.6 m>s, a = 83.2 m>s2

12–177. vr = -1.84 m>s, vu = 19.1 m>s, 

 ar = -2.29 m>s2, au = 4.60 m>s2

12–178. vr = -24.2 ft>s, vu = 25.3 ft>s
12–179. vr = 0, vu = 4.80 ft>s,

 vz = -0.664 ft>s, ar = -2.88 ft>s2 

 au = 0, az = -0.365 ft>s2

12–181. v = 10.7 ft>s, a = 24.6 ft>s2

12–182. v = 10.7 ft>s, a = 40.6 ft>s2

12–183. u
#
= 0.333 rad>s, a = 6.67 m>s2

12–185. v = 1.32 m>s
12–186. a = 8.66 m>s2

12–187. u
#
= 0.0178 rad>s

12–189. vr = 32.0 ft>s, vu = 50.3 ft>s, 

 ar = -201 ft>s2, au = 256 ft>s2

12–190. vr = 32.0 ft>s, vu = 50.3 ft>s, 

 ar = -161 ft>s2, au = 319 ft>s2

12–191. v = 5.95 ft>s, a = 3.44 ft>s2

12–193. vr = 0.242 m>s, vu = 0.943 m>s,

 ar = -2.33 m>s2, au = 1.74 m>s2

12–194. u
#
= 10.0 rad>s

12–195. vB = 0.5 m>s
12–197. v = 24 ft>s
12–198. vB = 1.67 m>s
12–199. �sB = 1.33 ft S
12–201. t = 3.83 s

12–202. vB = 0.75 m>s
12–203. t = 5.00 s

12–205. vB>C = 39 ft>sx
12–206. vB = 1.50 m>s
12–207. vA = 1.33 m>s
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13–77. Fs = 4.90 lb

13–78. v = 40.1 ft>s
13–79. NP = 2.65 kN, r = 68.3 m

13–81. u = 37.7�
13–82. NB = 80.4 N, at = 1.92 m>s2

13–85. FA = 4.46 lb

13–86. F = 210 N

13–87. F = 1.60 lb 

13–89. Fr = -29.4 N, Fu = 0, Fz = 392 N

13–90. Fr = 102 N, Fz = 375 N, Fu = 79.7 N

13–91. N = 4.90 N, F = 4.17 N

13–93. FOA = 12.0 lb
13–94. F = 5.07 kN, N = 2.74 kN

13–95. F = 17.0 N

13–97. (N)max = 36.0 N, (N)min = 4.00 N

13–98. Ns = 3.72 N, Fr = 7.44 N

13–99. Fr = -900 N, Fu = -200 N, Fz = 1.96 kN

13–101. u = tan-1a4rcu
2
0

#

g
b

13–102. N = 0.883 N, F = 3.92 N

13–103. N = 2.95 N

13–105. Fr = 1.78 N, Ns = 5.79 N 

13–106. Fr = 2.93 N, Ns = 6.37 N

13–107. F = 0.163 lb

13–109. Fr = 25.6 N, FOA = 0

13–110. Fr = 20.7 N, FOA = 0

13–111. r = 0.198 m

13–113. vo = 30.4 km>s,

 
1

r
= 0.348 (10-12) cos u + 6.74 (10-12)

13–114. h = 35.9 mm, vs = 3.07 km>s
13–115. v0 = 7.45 km>s
13–118. vB = 7.71 km>s, vA = 4.63 km>s
13–119. vA = 6.67(103) m>s, vB = 2.77(103) m>s
13–121. vA = 7.47 km>s
13–122. r0 = 11.1 Mm, �vA = 814 m>s
13–123. (vA )C = 5.27(103) m>s, �v = 684 m>s
13–125. (a) r = 194 (103) mi

 (b) r = 392 (103) mi

 (c) 194 (103) mi 6 r 6 392 (103) mi

 (d) r 7 392 (103) mi

13–126. vA = 4.89(103) m>s, vB = 3.26(103) m>s
13–127. vA = 11.5 Mm>h, d = 27.3 Mm

13–129. vA = 2.01(103) m>s
13–130. vA
 = 521 m>s, t = 21.8 h

13–131. vA = 7.01(103) m>s
Chapter 14
14–1. v = 10.7 m>s
14–2. x max = 3.24 ft

13–30. v = 0.301 m>s
13–31. T = 1.63 kN

13–33. P = 2mg a sin u + ms cos u

cos u - ms sin u
b ,

 a = a sin u + ms cos u

cos u - ms sin u
bg

13–34. v = 2.19 m>s
13–35. t = 5.66 s

13–37. t = 0.519 s

13–38. s = 16.7 m

13–39. v =
1
m
21.09F2

0 t
2 + 2F0tmv0 + m2v2

0,

 x =
y

0.3
+ v0a A

2m

0.3F0
by1>2

13–41. x = d, v = B
kd2

mA + mB

13–42. x = d for separation.

13–43. v = A
mg

k
 £ e2t 3mg>k

- 1

e2t 3mg>k
+ 1

§ ,
 vt = A

mg

k
13–45. v = 32.2 ft>s
13–46. P = 2mg tan u

13–47. P = 2mga  sin u + ms cos u

 cos u - ms sin u
b

13–49. aB = 7.59 ft>s2

13–50. v = 5.13 m>s
13–51. d =

(mA + mB)g

k
13–53. r = 1.36 m

13–54. v = 10.5 m>s
13–55. N = 6.18 kN

13–57. v = 1.63 m>s, N = 7.36 N

13–58. v = 0.969 m>s
13–59. v = 1.48 m>s
13–61. v = 9.29 ft>s, T = 38.0 lb

13–62. v = 2.10 m>s
13–63. T = 0, T = 10.6 lb

13–65. v = 6.30 m>s, Fn = 283 N, Ft = 0, Fb = 490 N

13–66. v = 22.1 m>s
13–67. u = 26.7�
13–69. Ff = 1.11 kN , N = 6.73 kN

13–70. vC = 19.9 ft>s, NC = 7.91 lb, vB = 21.0 ft>s
13–71. N = 277 lb, F = 13.4 lb

13–73. v = 2gr, N = 2mg
13–74. v = 49.5 m>s
13–75. at = g a x

21 + x2
b , v = 2v2

0 + gx2,

 N =
m

21 + x2
 c g -

v2
0 + gx2

1 + x2
d
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14–71. vC = 17.7 ft>s
14–73. NB = 0, h = 18.75 m, NC = 17.2 kN

14–74. vA = 1.54 m>s, vB = 4.62 m>s
14–75. sB = 5.70 m

14–77. h = 23.75 m, vC = 21.6 m>s
14–78. vB = 15.5 m>s
14–79. l = 2.77 ft

14–81. u = 118�

14–83. F = GMem a 1

r1

-
1

r2

b
14–85. vB = 34.8 Mm>h
14–86. s = 130 m

14–87. sB = 0.638 m, sA = 1.02 m

14–89. u = 22.3�, s = 0.587 m

14–90. N = 78.6 N

14–91. y = 5.10 m, N = 15.3 N, a = 9.32 m>s2 R
14–93. v = 1.68 m>s
14–94.  v2 = A

2
p  (p - 2)gr

14–95. v = 6.97 m>s
14–97. d = 1.34 m

Chapter 15
15–1. v = 1.75 N # s

15–2. v = 29.4 ft>s
15–3. F = 24.8 kN

15–5. I = 5.68 N # s

15–6. F = 19.4 kN, T = 12.5 kN

15–7. FAB = 16.7 lb, v = 13.4 ft>s
15–9. v = 6.62 m>s
15–10. P = 205 N

15–11. v = 60.0 m>s
15–13. mk = 0.340

15–14. I = 15 kN # s in both cases.

15–15. v = 4.05 m>s
15–17. v = 8.81 m>s, s = 24.8 m

15–18. v 0 t=3 s = 5.68 m>s T , v 0 t=6 s = 21.1 m>s c
15–19. v = 4.00 m>s
15–21. T = 14.9 kN, F = 24.8 kN

15–22. vmax = 108 m>s, s = 1.83 km

15–23. v = 10.1 ft>s
15–25. v = 7.21 m>s c
15–26. Observer A : v = 7.40 m>s, 

 Observer B: v = 5.40 m>s
15–27. v = 5.07 m>s
15–29. t = 1.02 s, I = 162 N # s

15–30. v = 16.1 m>s
15–31. (vA)2 = 10.5 ft>s S
15–33. v = 7.65 m>s
15–34. v = 0.6 ft>s d
15–35. v = 18.6 m>s S

14–3. s = 1.35 m

14–5. h = 39.3 m, r = 26.2 m

14–6. d = 12 m

14–7. Observer A : v2 = 6.08 m>s, 

 Observer B: v2 = 4.08 m>s
14–9. xmax = 0.173 m

14–10. s = 20.5 m

14–11. v = 4.08 m>s
14–13. vB = 31.5 ft>s, d = 22.6 ft, vC = 54.1 ft>s
14–14. vA = 7.18 ft>s
14–15. vA = 3.52 ft>s
14–17. vB = 27.8 ft>s
14–18. y = 3.81 ft

14–19. vB = 3.34 m>s
14–21.  vA = 0.771 ft>s
14–22. sTot = 3.88 ft

14–23. x = 0.688 m

14–25. s = 0.0735 ft

14–26. vA = 28.3 m>s
14–27. vB = 18.0 m>s, NB = 12.5 kN

14–29. s = 0.730 m

14–30. s = 3.33 ft

14–31. R = 2.83 m, vC = 7.67 m>s
14–33. d = 36.2 ft

14–34. s = 1.90 ft

14–35. vB = 42.2 ft>s, N = 50.6 lb, at = 26.2 ft>s2

14–37. hA = 22.5 m, hC = 12.5 m

14–38. vB = 14.9 m>s, N = 1.25 kN

14–39. vB = 5.42 m>s
14–41. l0 = 2.77 ft

14–42. u = 47.2�
14–43. Pi = 4.20 hp

14–45. P = 8.32 (103) hp

14–46. t = 46.2 min 

14–47. P = 12.6 kW

14–49. Pmax = 113 kW, Pavg = 56.5 kW

14–50. Po = 4.36 hp

14–51. P = 92.2 hp

14–53. Pi = 483 kW

14–54. Pi = 622 kW

14–55. Pi = 22.2 kW

14–57. P = 0.0364 hp

14–58. P = 0.231 hp

14–59. P = 12.6 kW

14–61. P = 5400(103)t6  W

14–62. P = 5160 t - 533t26  kW, U = 1.69 kJ

14–63. Pmax = 10.7 kW

14–65. P = 58.1 kW

14–66. F = 227 N

14–67. h = 133 in.

14–69. N = 694 N

14–70. u = 48.2�
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15–97. (HA )P = 5-52.8k6  kg # m2>s,

 (HB )P = 5-118k6  kg # m2>s
15–98. 5-21.5i + 21.5j + 37.66  kg # m2>s
15–99. 521.5i + 21.5j + 59.1k6  kg # m2>s
15–101. v = 20.2 ft>s, h = 6.36 ft

15–102. t = 11.9 s

15–103. v2 = 9.22 ft>s, �U1 - 2 = 3.04 ft # lb

15–105. v = 9.50 m>s
15–107. v = 3.33 m>s
15–109. vC = 44.0 ft>s, HA = 8.19 slug # ft2>s. 

 The cord will not unstretch. 

15–110. v2 = 4.03 m>s, �U1-2 = 725 J

15–111. vB = 10.8 ft>s, UAB = 11.3 ft # lb

15–113. vB = 10.2 km>s, rB = 13.8 Mm

15–114. T = 40.1 kN

15–115. Cx = 4.97 kN, Dx = 2.23 kN, Dy = 7.20 kN

15–117. F = 303 lb

15–118. F = 50.0 lb

15–119. Fx = 9.87 lb, Fy = 4.93 lb

15–121. Fx = 19.5 lb, Fy = 1.96 lb

15–122. F = 20.0 lb 

15–123. F = 22.4 lb

15–125. T = 82.8 N, N = 396 N

15–126. F = 6.24 N, P = 3.12 N

15–127.  d = 2.56 ft

15–129. Cx = 4.26 kN, Cy = 2.12 kN, MC = 5.16 kN # m

15–130. v = e 8000

2000 + 50t
f  m>s

15–131. Ay = 4.18 kN, Bx = 65.0 N S ,  

 By = 3.72 kNc
15–133. a = 0.125 m>s2, v = 4.05 m>s
15–134. vmax = 2.07 (103) ft>s
15–135. 452 Pa

15–137. R = {20t + 2.48} lb

15–138. ai = 133 ft>s2, af = 200 ft>s2

15–139. vmax = 580 ft>s
15–141. v = C

2

3
 ga y3 - h3

y2
b

15–142. FD = 11.5 kN

15–143. a = 37.5 ft>s2

15–145. a = 0.0476 m>s2

15–146. v max = 2.07(103) ft>s
15–147. F = {7.85t + 0.320} N

15–149. F = m
v2

Chapter 16
16–1. vA = 2.60 m>s, aA = 9.35 m>s2

16–2. vA = 22.0 m>s, 

 (aA )t = 12.0 m>s2, (aA )n = 968 m>s2

16–3. vA = 26.0 m>s, 

 (aA )t = 10.0 m>s2, (aA )n = 1352 m>s2

15–37. v = 5.21 m>s d , �T = -32.6 kJ

15–38. y = 0.5 m>s, �T = -16.9 kJ

15–39. v = 733 m>s
15–41. vB = 3.48 ft>s, d = 0.376 ft

15–42. vB = 3.48 ft>s, Navg = 504 lb, t = 0.216 s

15–43. s = 4.00 m

15–45. v2 = 2v2
1 + 2gh, u2 =  sin- 1a v1 sin u

2v2
1 + 2gh

b
15–46. u = f = 9.52�
15–47. s max = 481 mm

15–49. x = 0.364 ft d
15–50. x = 1.58 ft S
15–51. sB = 6.67 m S
15–53. sB = 71.4 mm S
15–54. sB = 71.4 mm S
15–55. vc = 5.04 m>s d
15–57. d = 6.87 mm

15–59. e = 0.75, �T = -9.65 kJ

15–61. xmax = 0.839 m

15–63. vC = 0.1875v S , vD = 0.5625v S , 

 vB = 0.8125v S ,  vA = 0.4375v S  

15–65. t = 0.226 s

15–66. (vB)2 =
1

3
22gh(1 + e)

15–67. (vA)2 = 1.04 ft>s, (vB)3 = 0.964 ft>s, 

 (vC)3 = 11.9 ft>s
15–69. v
B = 22.2 m>s, u = 13.0�

15–70. (vB)2 =
e(1 + e)

2
v0

15–71. vA = 29.3 ft>s, vB2 = 33.1 ft>s, u = 27.7� a
15–73. vA = 1.35 m>s S ,  vB = 5.89 m>s, u = 32.9� b
15–74. e = 0.0113

15–75. h = 1.57 m

15–77. (vB)3 = 3.24 m>s, u = 43.9�
15–78. v
B = 31.8 ft>s
15–79. (yA)2 = 3.80 m>s d , 

 (yB)2 = 6.51 m>s, (uB)2 = 68.6�
15–81. (a) (vB)1 = 8.81 m>s, u = 10.5� a,

 (b) (vB)2 = 4.62 m>s, f = 20.3� b,

 (c) s = 3.96 m

15–82. s = 0.456 ft

15–83. (vA)2 = 42.8 ft>s d, F = 2.49 kip

15–85. mk = 0.25

15–86. (vB )2 = 1.06 m>s d , (vA )2 = 0.968 m>s, 

 (uA)2 = 5.11�e
15–87. (vA)2 = 4.06 ft>s, (vB)2 = 6.24 ft>s
15–89. (vA )2 = 12.1 m>s, (vB )2 = 12.4 m>s
15–90. d = 1.15 ft, h = 0.770 ft

15–91. (vB)3 = 1.50 m>s
15–93. (vA)2 = 8.19 m>s, (vB)2 = 9.38 m>s
15–94. 5-9.17i - 6.12k6  slug # ft2>s
15–95. 5-9.17i + 4.08j - 2.72k6  slug # ft2>s
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16–5. u = 5443 rev, v = 740 rad>s, a = 8 rad>s2

16–6. u = 3.32 rev, t = 1.67 s

16–7. t = 6.98 s, uD = 34.9 rev

16–9. aB = 29.0 m>s2

16–10. aB = 16.5 m>s2

16–11. a = 60 rad>s2, v = 90.0 rad>s, u = 90.0 rad

16–13. vB = 180 rad>s, vC = 360 rad>s
16–14. v = 42.7 rad>s, u = 42.7 rad

16–15. at = 2.83 m>s2, an = 35.6 m>s2

16–17. vB = 21.9 rad>s d
16–18. vB = 31.7 rad>s d
16–19. vB = 156 rad>s
16–21. vA = 8.10 m>s, 

 (aA )t = 4.95 m>s2, (aA )n = 437 m>s2

16–22. vD = 4.00 rad>s, aD = 0.400 rad>s2

16–23. vD = 12.0 rad>s, aD = 0.600 rad>s2

16–25. vP = 2.42 ft>s, aP = 34.4 ft>s2

16–26. vC = 1.68 rad>s, uC = 1.68 rad

16–27. v = 148 rad>s
16–29. rA = 31.8 mm, rB = 31.8 mm, 

 1.91 canisters per minute

16–30. (vB)max = 8.49 rad>s, (vC)max = 0.6 m>s
16–31. sW = 2.89 m

16–33. vB = 312 rad>s, aB = 176 rad>s2

16–34. vE = 3 m>s, 

 (aE)t = 2.70 m>s2, (aE)n = 600 m>s2

16–35. vC = 5-4.8i - 3.6j - 1.2k6  m>s, 

 aC = 538.4i - 64.8j + 40.8k6  m>s2

16–37. vC = 2.50  m>s, aC = 13.1 m>s2

16–38. v = 7.21 ft>s, a = 91.2 ft>s2

16–39. v =
rvA

y2y2 - r2
, a =

rvA
2(2y2 - r2)

y2(y2 - r2)3>2
16–41. v = 8.70 rad>s, a = -50.5 rad>s2

16–42. v = -19.2 rad>s, a = -183 rad>s2

16–43. vAB = 0

16–45. v = - a r 2
1 v sin  2u

22r 2
1  cos2 u + r 2

2 + 2r1r2

+ r1v sin ub
16–46. v = vd asin u +

d sin 2u

21(R + r)2 - d2 sin2 u
b

16–47. v = -rv sin u

16–49. vC = Lvc , aC = 0.577 Lv2c

16–50. v =
2v0

r
 sin2 u>2, a =

2v0
 2

r2  (sin u)(sin2 u>2)

16–51. vB = ¢h

d
≤vA

16–53. u
#
=

v sin f

L cos (f - u)

16–54. v =
v

2r

16–55. v
 =
(R + r)v

r
, a
 =

(R + r)a

r

16–57. vB = 12.6 in.>s, 65.7� b
16–58. vAB = 2.00 rad>s
16–59. vC = 1.06 m>s d , vBC = 0.707 rad>s b
16–61. vBC = 2.31 rad>sd, vAB = 3.46 rad>sd
16–62. vA = 32.0 rad>s
16–63. vCB = 2.45 rad>sd, vC = 2.20 ft>s d
16–65. v = 20 rad>s, vA = 2 ft>s S
16–66. v = 3.11 rad>s, vO = 0.667 ft>s S
16–67. vA = 5.16 ft>s, u = 39.8� a
16–69. vC = 24.6 m>s T
16–70.  vBC = 10.6 rad>s d, vC = 29.0 m>s S
16–71. vP = 4.88 m>s d  

16–73. vE = 4.00 m>s, u = 52.7� c
16–74. vB = 90 rad>s b, vA = 180 rad>s d
16–75. vCD = 4.03 rad>s
16–77. vP = 5 rad>s, vA = 1.67 rad>s
16–78. vD = 105 rad>s b
16–79. vD = 7.07 m>s
16–82. vAB = 1.24 rad>s
16–83. vBC = 6.79 rad>s
16–85. vA = 2 ft>s S ,  vB = 10 ft>s d . 

 The cylinder slips.

16–86. vB = 14 in.>sT , 

 vA = 10.8 in.>s, u = 21.8� c
16–87. vBC = 8.66 rad>s d, vAB = 4.00 rad>s b
16–89. vA = v (r2 - r1)

16–90. vC = 2.50 ft>s d , 

 vD = 9.43 ft>s, u = 55.8� h
16–91. vC = 2.50 ft>s d , 

 vE = 7.91 ft>s, u = 18.4� e
16–93. vBPD = 3.00 rad>s b, vP = 1.79 m>s d
16–94. vB = 6.67 rad>s
16–95. vA = 60.0 ft>s S , vC = 220 ft>s d , 

 vB = 161 ft>s, u = 60.3� b
16–97. vS = 57.5 rad>sd, vOA = 10.6 rad>sd
16–98. vS = 15.0 rad>s, vR = 3.00 rad>s
16–99. vCD = 57.7 rad>sd
16–101. vR = 4 rad>s
16–102. vR = 4 rad>s
16–103. vC = 3.86 m>s d , aC = 17.7 m>s2 d
16–105. a = 0.0962 rad>s2 b, aA = 0.385 ft>s2 S
16–106. aC = 13.0 m>s2 b, aBC = 12.4 rad>s2 b
16–107. v = 6.67 rad>s d, vB = 4.00 m>s R
 a = 15.7 rad>s2 b, aB = 24.8 m>s2 a
16–109. vBC = 0, vCD = 4.00 rad>s b,

 aBC = 6.16 rad>s2 b, aCD = 21.9 rad>s2 b
16–110. vC = 20.0 rad>s d, aC = 127 rad>s b
16–111. aAB = 4.62 rad>s2 d, 

 aB = 13.3 m>s2, u = 37.0� c
16–113. vA = 0.424 m>s, uv = 45� c , 

 aA = 0.806 m>s2, ua = 7.13� a
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17–7. Ix =
93

70
mb2

17–9. Iy =
m

6
 (a2 + h2)

17–10. kO = 2.17 m

17–11. IO = 1.36 kg # m2

17–13. IA = 7.67 kg # m2

17–14. IA = 222 slug # ft2

17–15. IO = 6.23 kg # m2

17–17. IG = 0.230 kg # m2

17–18. IO = 0.560 kg # m2

17–19. IG = 118 slug # ft2

17–21. y = 1.78 m, IG = 4.45 kg # m2

17–22. Ix = 3.25 g # m2

17–23. Ix
 = 7.19 g # m2

17–25. F = 5.96 lb, NB = 99.0 lb, NA = 101 lb

17–26. Ay = 72.6 kN, By = 71.6 kN, aG = 0.250 m>s2

17–27. NA = 1393 lb, NB = 857 lb, t = 2.72 s

17–29. a = 2.74 m>s2, T = 25.1 kN

17–30. N = 29.6 kN, V = 0, M = 51.2 kN # m

17–31. h = 3.12 ft

17–33. P = 579 N

17–34. a = 4 m>s2 S , NB = 1.14 kN, NA = 327 N

17–35. aG = 13.3 ft>s2

17–37. P = 785 N

17–38. P = 314 N

17–39. N = 0.433wx, V = 0.25wx, M = 0.125wx2

17–41. Bx = 73.9 lb, By = 69.7 lb, NA = 120 lb

17–42. a = 2.01 m>s2. 

 The  crate  slips.

17–43. a = 2.68 ft>s2, NA = 26.9 lb, NB = 123 lb

17–45. T = 15.7 kN, Cx = 8.92 kN, Cy = 16.3 kN

17–46. a = 9.81 m>s2, Cx = 12.3 kN, Cy = 12.3 kN

17–47. h max = 3.16 ft, FA = 248 lb, NA = 400 lb

17–49. FAB = 112 N, Cx = 26.2 N, Cy = 49.8 N

17–50. P = 765 N

17–51. T = 1.52 kN, u = 18.6�
17–53. a = 9.67 rad>s2

17–54. FC = 16.1 lb, NC = 159 lb

17–55. a = 2.62 rad>s2

17–57. v = 56.2 rad>s, Ax = 0, Ay = 98.1 N

17–58. a = 14.7 rad>s2, Ax = 88.3 N, Ay = 147 N 

17–59. FA =
3

2
 mg

17–61. a = 0.694 rad>s2

17–62. v = 10.9 rad>s
17–63. v = 9.45 rad>s
17–65. M = 0.233 lb # ft

17–67. a = 8.68 rad>s2, An = 0, At = 106 N

17–69. a = 7.28 rad>s2

17–70. F = 22.1 N

17–71. v = 0.474 rad>s

16–114. vB = 0.6 m>s T , 

 aB = 1.84 m>s2, u = 60.6� c
16–115. vB = 4v S ,  

 vA = 222v, u = 45�a, 

 aB =
2v2

r
T , aA =

2v2

r
S

16–117. aC = 10.0 m>s2, u = 2.02�  d
16–118. a = 40.0 rad>s2, aA = 2.00 m>s2 d
16–119. vB = 1.58va, aB = 1.58 aa - 1.77v2a
16–121. vAC = 0, vF = 10.7 rad>s b, 

 aAC = 28.7 rad>s2 b
16–122. vCD = 7.79 rad>s d, aCD = 136 rad>s2 b
16–123. vC = 1.56 m>s d ,  

 aC = 29.7 m>s2, u = 24.1� c
16–125. v = 4.73 rad>s d, a = 131 rad>s2 b
16–126. vAB = 7.17 rad>sb, aAB = 23.1 rad>s2d
16–127. aAB = 3.70 rad>s2 b
16–129. vB = {0.6i + 2.4j} m>s,  

 aB = {-14.2i + 8.40j} m>s2

16–130. vB = 1.30 ft>s, aB = 0.6204 ft>s2

16–131. vm = 57.5i - 5j6  ft>s, am = 55i + 3.75j6  ft>s2

16–133. vA = {-17.2i + 12.5j} m>s, 

 aA = {349i + 597j} m>s2

16–134. aA = 5-5.60i - 16j6  m>s2

16–135. vC = 2.40 m>s, u = 60� b
16–137. (vB>A )xyz = {31.0i}  m>s, 

 (aB>A )xyz = {-14.0i - 206j}  m>s2

16–138. vB = 7.7 m>s, aB = 201 m>s2

16–139. vCB = 1.33 rad>s d, aCD = 3.08 rad>s2 b
16–141. vCD = 3.00 rad>s b, aCD = 12.0 rad>s2 b
16–142. vC = 5-0.944i + 2.02j6  m>s, 

 aC = 5-11.2i - 4.15j6  m>s2

16–143. vAB = 5 rad>s b, aAB = 2.5 rad>s2 b

16–145. vC = {-7.00i + 17.3j} ft>s, 

  aC = {-34.6i - 15.5j} ft>s2

16–146. vC = {-7.00i + 17.3j} ft>s, 

 aC = {-38.8i - 6.84j} ft>s2

16–147. vAB = 0.667 rad>s d, aAB = 3.08 rad>s2 b
16–149. (vrel)xyz = 0, (arel)xyz = {1i} m>s2

16–150. vDC = 2.96 rad>s b
16–151. vAC = 0, aAC = 14.4 rad>s2 b

Chapter 17
17–1. Iy =

1

3
 m l2

17–2. m = p h R2ak +
aR2

2
b , Iz =

p h R4

2
c k +

2 aR2

3
d

17–3. Iz = mR2

17–5. kx = 1.20 in.

17–6. Ix =
2

5
 m  r2
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18–5. v = 2.02 rad>s
18–6. v = 1.78 rad>s
18–7. T = 283 ft # lb

18–9. v = 21.5 rad>s
18–10. s = 5.16 m, T = 78.5 N

18–11. v = 14.9 rad>s
18–13. v = 6.11 rad>s
18–14. v = 8.64 rad>s
18–15. v = 3.16 rad>s
18–17. v = Av2

0 +
g

r2
 s  sin u

18–18. vC = 7.49 m>s
18–19. v = 6.92 rad>s
18–21. s = 0.304  ft

18–22. vC = 19.6 ft>s
18–23. u = 0.445 rev

18–25. sG = 1.60 m

18–26. v2 = 5.37 rad>s
18–27. v = 44.6 rad>s
18–29. vG = 11.9 ft>s
18–30. v = 2.50 rad>s
18–31. v = 5.40 rad>s
18–33. u = 0.891 rev, regardless of orientation

18–34. v = 5.74 rad>s
18–35. vAB = 5.92 rad>s
18–37. sC = 78.0 mm

18–38. s = 0.301 m, T = 163 N

18–39. vA = 1.29 m>s
18–41. sb = 242 mm, T = 67.8 N

18–42. vb = 2.52 m>s
18–43. u = 48.2�
18–45. v = 3.78 rad>s
18–46. v = 3.75 rad>s
18–47. v = 3.28 rad>s
18–49. (vAB )2 = (vBC)2 = 1.12 rad>s
18–50. vA = 1.40 m>s
18–51. u0 = 8.94 rev

18–53. vBC = 1.34 rad>s
18–54. vb = 15.5  ft>s 

18–55. vA = 4.00 m>s
18–57. v = 12.8 rad>s
18–58. k = 18.4 N>m
18–59. v = 2.67 rad>s
18–61. vAB = 3.70 rad>s
18–62. v = 1.80 rad>s
18–63. yA = 21.0 ft>s
18–65. v = 2.71 rad>s
18–66. k = 100 lb>ft
18–67. (vA)2 = 7.24 m>s

17–73. t = 6.71 s

17–74. a = 14.2 rad>s2

17–75. Ax = 89.2 N, Ay = 66.9 N, t = 1.25 s

17–77. t = 1.09 s

17–78. v = 4.88 ft>s
17–79. a = 2.97 m>s2

17–81. Ax = 0, Ay = 289 N, a = 23.1 rad>s2

17–82. NA = 177 kN, VA = 5.86 kN, MA = 50.7 kN # m

17–83. M = 0.3gml

17–85. N = wx c v2

g
aL -

x

2
b +  cos u d ,

 V = wx sin u, M =
1

2
wx2  sin u

17–86. a = 12.5 rad>sb, aG = 18.75 m>s2 T
17–87. NB = 2.89 kN, 

 Ax = 0, Ay = 2.89 kN

17–89. v = 800 rad>s
17–91. a = 5.62 rad/s2, T = 196 N

17–93.  a = 2.45 rad>s2 b, NB = 2.23 N, NA = 33.3 N

17–94. a = 4.32 rad>s2

17–95. u = 46.9�
17–97. a = 0.500 rad>s2

17–98. a = 15.6 rad>s2

17–99. aA = 26.7 m>s2 S
17–101. F = 42.3 N

17–102. a = 4.01 rad>s2

17–103. Ay = 15.0 lb, Ax = 0.776 lb, a = 1.67 rad>s2

17–105. a = 18.9 rad>s2, P = 76.4 lb

17–106. a =
6P

mL
, aB =

2P

m

17–107. a =
6(P - mk mg)

mL
, aB =

2(P - mk mg)

m
17–109. a = 3 rad>s2

17–110. a = 14.5 rad>s2, t = 0.406 s

17–111. The disk does not slip.

17–113. aG = mkg d, a =
2mkg

r
 b

17–114. v =
1

3
v0, t =

v0r

3mkg

17–115. aA = 43.6 rad>s2b, aB = 43.6 rad>s2 d, T = 19.6 N

17–117. TA =
4

7
W

17–118. a = 23.4 rad>s2, By = 9.62 lb

17–119. a =
10g

1322 r

Chapter 18
18–2. v = 14.0 rad>s
18–3. v = 14.1 rad>s



742  ANSWERS TO SELECTED PROBLEMS

19–57. (vG)y2 = e(vG)y1 c , 

 (vG)x2 =
5

7
a(vG)x1 -

2

5
 v1rb d

19–58. u1 = 39.8°

Chapter 20
20–1. (a) A = vs vt j, 
 (b) A = -vs vt k
20–2. vA = {-0.225i} m>s, 

 aA = {-0.1125j - 0.130k} m>s2

20–3. vA = 5-5.20i -  12j +  20.8k6  ft>s, 

 aA = 5-24.1i -  13.3j -  7.20k6  ft>s2

20–5. (vC)DE = 40 rad>s, (vDE)y = 5 rad>s
20–6. V = {-8.24j} rad>s, A = {24.7i - 5.49j} rad>s2

20–7. vA = 5-7.79i -  2.25j +  3.90k6ft>s, 

 aA = 58.30i -  35.2j +  7.02k6ft>s2

20–9. vB = 5-0.4i - 2j - 2k6  m>s,

 aB = 5-8.20i + 40.6j - k6  rad>s2

20–10. V = {42.4j + 43.4k} rad>s, 

 A = {-42.4i} rad>s2

20–11. V = {2i + 42.4j + 43.4k} rad>s, 

 A = {-42.4i - 82.9j + 84.9k} rad>s2

20–13. vB = 0, vC = 0.283 m>s, aB = 1.13 m>s2, 

 aC = 1.60 m>s2

20–14. vC = 51.8j -  1.5k6  m>s, 

 aC = 5-36.6i +  0.45j -  0.9k6  m>s2

20–15. vA = 5-8.66i +  8.00j -  13.9k6  ft>s, 

 aA = 5-24.8i +  8.29j -  30.9k6  ft>s2

20–17. vA = {-1.80i} ft>s, 

 aA = {-0.750i - 0.720j - 0.831k} ft>s2

20–18. VP = 5-40j6  rad>s, AB = 5-6400i6  rad>s2

20–19. V = 54.35i +  12.7j6  rad>s, 

 A = 5-26.1k6  rad>s2

20–21. V = 530j -  5k6rad>s, A = 5150i6rad>s2

20–22. vA = 510i +  14.7j -  19.6k6  ft>s, 

 aA = 5-6.12i +  3j -  2k6  ft>s2

20–23. vA = 47.8 rad>s, vB = 7.78 rad>s
20–25. VBC = 50.204i -  0.612j +  1.36k6  rad>s, 

 vB = 5-0.333j6m>s
20–26. VAB = 5-1.00i - 0.500j + 2.50k6  rad>s,

 vB = 5-2.50j - 2.50k6  m>s
20–27. AAB = 5-7.9i - 3.95j + 4.75k6  rad>s2,

 aB = 5-19.75j - 19.75k6  m>s2

20–29. aB = 5-37.6j6  ft>s2

20–30. vB = 5-1.92j + 2.56k6  m>s
20–31. vB = 5.00 m>s, 

 VAB = 5-4.00i - 0.600j - 1.20k6  rad>s
20–33. VBD = {-1.20j } rad>s

Chapter 19
19–5. LM  dt = 0.833 kg # m2>s
19–6. v = 0.0178 rad>s
19–7. vB = 24.1 m>s
19–9. v2 = 103 rad>s
19–10. t = 0.6125 s

19–11. v2 = 53.7 rad>s
19–13. y =

2

3
 l

19–14. d =
2

3
 l

19–15. (a) vBC = 68.7 rad>s,

 (b) vBC = 66.8 rad>s,

 (c) vBC = 68.7 rad>s
19–17. vG = 26.8 ft>s
19–18. vG = 2 m>s, v = 3.90 rad>s
19–19. vA = 24.1 m>s
19–21. v = 12.7 rad>s
19–22. vA = 47.3 rad>s
19–23. t = 1.32 s

19–25. t = 1.04 s

19–26. v = 9 rad>s
19–27. vB = 1.59 m>s
19–29. v = 1.91 rad>s
19–30. v2 = 0.656 rad>s, u = 18.8�
19–31. v2 = 0.577 rad>s, u = 15.8�
19–33. v2 = 2.55 rev>s
19–34. v = 0.190 rad>s
19–35. v = 0.0906 rad>s
19–37. v = 22.7 rad>s
19–38. hC = 0.500 ft

19–39. v2 = 1.01 rad>s
19–41. u = 66.9�
19–42. v2 = 57 rad>s, UF = 367 J

19–43. v2 = 3.47 rad>s
19–45. v = 5.96 ft>s
19–46. h =

7

5
 r

19–47. u = 50.2�
19–49. (vD)3 = 1.54 m>s, v3 = 0.934 rad>s
19–50. v1 = 7.17 rad>s
19–51. u =  tan- 1aA7

5
 eb

19–53. v3 = 2.73 rad>s
19–54. v = A7.5 

g

L
19–55. hB = 0.980 ft
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21–18. Ix = 0.455 slug # ft2

21–19. Iaa = 1.13 slug # ft2

21–21. Iz = 0.0880 slug # ft2

21–25. H = {-477(10- 6) i + 198(10- 6) j + 0.169 k} kg #m2>s
21–26. v2 = 61.7 rad>s
21–27. v2 = 87.2 rad>s
21–29. vx = 19.7 rad>s
21–30. h = 2.24 in.

21–31. T = 0.0920 ft # lb

21–33. vp = 4.82 rad>s
21–34. HA = 5-2000i - 55 000j + 22 500k6  kg # m2>s
21–35. T = 37.0 MJ

21–37. V = {-0.750j + 1.00k} rad>s
21–38. T = 1.14 J

21–39. Hz = 0.4575 kg # m2>s
21–41. �Mx = (Ixv

#
x - Ixyv

#
y - Ixzv

#
z),  

 -  �z(Iyvy - Iyzvz - Iyxvx), 

 +  �y(Izvz - Izxvx - Izyvy) 

 Similarly for �My and �Mz.

21–43. Bz = 4 lb, Ax = -2.00 lb, Ay = 0.627 lb, 

 Bx = 2.00 lb, By = -   1.37 lb

21–45. AZ = 1.46  lb, BZ = 13.5 lb, AX = AY = BX = 0, 

21–46. v
#

x = -14.7 rad>s2, Bz = 77.7 N, By = 3.33 N, 

 Ax = 0, Ay = 6.67 N, Az = 81.75 N

21–47. v
#

x = 9.285 rad>s2, Bz = 97.7 N, By = 3.33 N,   

 Ax = 0, Ay = 6.67 N, Az = 122 N

21–49. v
#

z = 200 rad>s2, Dy = -12.9 N, Dx = -37.5 N, 

 Cx = -37.5 N, Cy = -11.1 N, Cz = 36.8 N

21–50. TB = 47.1 lb, My = 0, Mz = 0, Ax = 0, 

 Ay = -93.2 lb, Az = 57.1 lb

21–51. v
#

y = -102 rad>s2, Ax = Bx = 0, Ay = 0, 

 Az = 297 N, Bz = -143 N

21–53. Mz = 0, Ax = 0, My = 0, u = 64.1�, 
 Ay = 1.30 lb, Az = 20.2 lb

21–54. N = 148 N, Ff = 0

21–55. (M0)x = 72.0 N # m, (M0)z = 0

21–57. Mx = -
4

3
ml2 vsvp  cos u, 

 My =
1

3
ml2 vp

2  sin 2u, Mz = 0

21–58. Bx = 0, By = -3.90 lb, Ay = -1.69 lb, 

 Az = Bz = 7.5 lb

21–59. �Mx = 0, �My = (-0.036  sin u) N # m, 

 �Mz = (0.003  sin 2u) N # m

21–61.  a =  69.3�, b =  128�, g =  45�. No, the 

orientation will not be the same for any order. 

Finite rotations are not vectors.

21–62. vP = 27.9 rad>s
21–63. vR = 368 rad>s
21–65. vP = 1.19 rad>s
21–66. Mx = 328 N # m

20–34. ABD = 5-8.00j6  rad>s2

20–35. VAB = 5-0.500i +  0.667j -  1.00k6  rad>s
 vB = {-7.50j}  ft>s
20–37. vC = 5-1.00i +  5.00j +  0.800k6  m>s, 

 aC = 5-28.8i -  5.45j +  32.3k6  m>s2

20–38. vC = 5-1i +  5j +  0.8k6  m>s, 

 aC = 5-28.2i -  5.45j +  32.3k6  m>s2

20–39. vB = 5-2.75i -  2.50j +  3.17k6  m>s, 

 aB = 52.50i -  2.24j -  0.00389k6  ft>s2

20–41. vC = {3i + 6j - 3k} m>s, 

 aC = {-13.0i + 28.5j - 10.2k} m>s2

20–42. vB = 5-17.8i -  3j +  5.20k6  m>s, 

 aB = 59i -  29.4j -  1.5k6  m>s2

20–43. vB = 5-17.8i -  3j +  5.20k6  m>s, 

 aB = 53.05i -  30.9j +  1.10k6  m>s2

20–45. vP = {-0.849i + 0.849j + 0.566k} m>s, 

 aP = {-5.09i - 7.35j + 6.79k} m>s2

20–46. vA = {-8.66i + 2.26j + 2.26k} m>s, 

 aA = {-22.6i - 47.8j + 45.3k} m>s2

20–47. vA = {-8.66i + 2.26j + 2.26k} m>s, 

 aA = {-26.1i - 44.4j + 7.92k} m>s2

20–49. vP = {-9.80i + 14.4j + 48.0k} ft>s, 

 aP = {-160i + 5.16j - 13k} ft>s2

20–50. vP = 5-25.5i -  13.4j +  20.5k6  ft>s, 

 aP = 5161i -  249j -  39.6k6  ft>s2

20–51. vP = 5-25.5i -  13.4j +  20.5k6  ft>s, 

 aP = 5161i -  243j -  33.9k6  ft>s2

20–53. vA = 5-8.66i + 8j - 13.9k6  ft>s, 

 aA = 5-17.9i + 8.29j - 30.9k6  ft>s2,

20–54. vC = {-1.73i - 5.77j + 7.06k} ft>s, 

 aC = {9.88i - 72.8j + 0.365k} ft>s2

Chapter 21
21–2. Iy =

3m

80
(h2 + 4a2), Iy
 =

m

20
(2h2 + 3a2)

21–3. Iy = 2614 slug # ft2

21–5. Iyz =
m

6
 ah

21–6. Ixy =
m

12
 a2

21–7. Ixy = 636r

21–9. Iz
z
 = 0.0961 slug # ft2

21–10. ky = 2.35 ft, kx = 1.80 ft

21–11. Iaa =
m

12
(3a2 + 4h2)

21–13. Iyz = 0

21–14. Ixy = 0.32 kg # m2, Iyz = 0.08 kg # m2, Ixz = 0

21–15. Iz
 = 0.0595 kg # m2

21–17. y = 0.5 ft, x = -0.667 ft, Ix
 = 0.0272 slug # ft2, 

 Iy
 = 0.0155 slug # ft2, Iz
 = 0.0427 slug # ft2
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22–37. E = 0.175  
#
u2 + 10 u2, t = 0.830 s

22–38. t = pA
m

k
22–39. f = 1.28 Hz

22–41. x = A  sin vnt + B cos vnt + +
F0>k

1 - (v>vn)
2
 cos vt

22–42. y = A  sin vn t + B cos vn t +
FO

k
22–43. y = {-0.0232 sin 8.97 t + 0.333 cos 8.97 t
 + 0.0520 sin 4t} ft

22–45. y = A  sin vnt + B cos vnt +
d0

1 - (v>vn)2
  sin vt

22–46. y = 1361 sin 7.75t + 100 cos 7.75t, 
       - 350 sin 8t2 mm

22–47. C =
3FO

3
2 (mg + Lk) - mLv2

22–49. (xp)max = 29.5 mm

22–50. u
$

+
4c

m
 u

#
+

k

m
 u
#
= 0

22–51. (vp)max = 0.3125 m>s
22–53. v = 14.0 rad>s
22–54. (xp)max = 14.6 mm

22–55. (xp)max = 35.5 mm

22–57. v = 19.7 rad>s
22–58. C = 0.490 in.

22–59. v = 19.0 rad>s
22–61. (xp)max = 4.53 mm

22–62. Y =
mrv2L3

48EI - Mv2L3

22–63. v = 12.2 rad>s, v = 7.07 rad>s
22–65. f
 = 9.89�
22–66. MF = 0.997

22–67. y = 5-0.0702 e-3.57t sin (8.540)6  m

22–69. F = 2cy
#
, cc = 2mA

k

m
, c 6 2mk

22–71. v = 21.1 rad/s

22–73. 1.55u
$

+ 540u
#

+ 200u = 0,  

 (cdp)c = 3.92 lb # s>ft
22–74. cc = 28(m + M)k, xmax = cm

e A
1

2k(m + M)
d v0

22–75. xmax =
2mv0

28k(m + M) - c2
 e-pc>(228k(m + M)- c2 )

22–77. Lq + Rq + a 1

C
bq = E0 cos vt

22–78. Lq
$

+ Rq
#

+ a 2

C
bq = 0

22–79. Lq
$ + Rq

# +
1

C
 q = 0

21–67. f
#
= a 2g cos u

a + r cos u
b1>2

21–69. vs = 3.63(103) rad/s

21–70. u = 68.1�
21–71.  f

#
= 81.7 rad>s, c

#
= 212 rad>s,

 regular precession

21–74. c
#
= 2.35 rev>h

21–75. a = 90�, b = 9.12�, g = 80.9�
21–77. HG = 12.5 Mg # m2>s
21–78. f

#
= 3.32 rad>s

Chapter 22
22–1. y

$ + 56.1 y = 0, y � t=0.22 s = 0.192 m

22–2. x = -0.05 cos (20t)
22–3. y = 0.107 sin(7.00t) + 0.100 cos(7.00t), 
 f = 43.0�
22–5. vn = 49.5 rad/s, t = 0.127 s

22–6. x = {-0.126 sin(3.16t) - 0.09 cos(3.16t)} m, 

 C = 0.155 m

22–7. vn = 19.7 rad/s, C = 1 in. 

 y = (0.0833 cos 19.7t) ft
22–9. vn = 8.16 rad>s, x = -0.05 cos(8.16t), C = 50 mm

22–10. t = 2pB
2mL

3mg + 6kL
22–11. t = 1.45 s

22–13. t = 2pB
k2

G + d2

gd
22–14. k = 90.8 lb # ft>rad

22–15. k = 1.36 N>m, mB = 3.58 kg

22–17. k1 = 2067 N>m, k2 = 302 N>m, or vice versa 

22–18. mB = 21.2 kg, k = 609 N>m
22–19. y = 503 mm

22–21. x = 0.167 cos 6.55 t

22–22. vn = C
3g(4R2 - l2)1>2

6R2 - l2

22–23. t = 1.66 s

22–25. f = 0.900 Hz

22–26. t = 2pkOA
m

C
22–27. vn = 3.45 rad>s
22–29. t = 2pA

l

2g
22–30. x

$ + 333x = 0

22–31. t = 1.52 s

22–33. t = 0.774 s

22–34. u
$

+ 468u = 0

22–35. t = 0.487 s
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Index
A
a–s (acceleration–position) graphs, 22

a–t (acceleration–time) graphs, 20–21

Absolute acceleration, 91, 373

Absolute dependent motion analysis, 

see Dependent motion analysis

Absolute motion analysis, 338–341, 404

Absolute velocity, 91, 347

Acceleration (a), 7–8, 20–22, 35, 37, 

57–58, 73, 92, 106, 112–177, 321, 

323, 325–326, 373–380, 392–393, 

404–405, 408–471, 563–564, 580

absolute, 92, 373

angular (a), 73, 323, 409, 563–564

average, 7, 35

centripetal, 58

circular motion and, 325–326, 

373–375

constant, 8, 323

continuous motion and, 7–8

Coriolis, 393, 405

curvilinear motion and, 35, 37, 

57–58, 73

cylindrical components and, 73, 

152–156, 175

equations of motion for, 116–126, 

138–143, 152–156, 175, 423–

431, 441–447, 456–461, 469

erratic motion and, 20–22

fixed-axis rotation and, 323, 

325–326, 404, 441–447, 469

fixed-point rotation and, 563–564

force (F) and, 112–177, 408–471

general plane motion and, 

373–380, 392–393, 404–405, 

456–461, 469

graphs of variables, 20–22, 106

gravitational (g), 115

hodographs and, 35

inertia and, 113

instantaneous, 7, 35

kinematics of particles and, 7–8, 

35–37, 57–58, 73, 92, 106

kinetics of particles, 112–177

magnitude of, 37, 57–58, 73, 373, 

392, 441–442

mass (m) and, 113–114

moment of inertia (I)  

and, 409–417, 442–443,  

456–457, 469

normal (n) components of, 57–58, 

138–143, 175, 325–326, 441–442

normal force (N) and, 152–156

planar kinetics of rigid bodies, 

408–471

planar kinematics of rigid bod-

ies and, 321, 323, 325–326, 

373–380, 404–405

procedure for analysis of, 375

rectangular components and, 37, 

120–126, 175

rectilinear kinematics and, 7–8, 

20–22, 106

relative, 92

relative-motion analysis and, 92, 

373–380, 392–393, 405, 580

resistance of body to, 409

rotating axes, 392–393, 405, 580

rotation and, 323, 325–326, 373–380, 

405, 424–425, 441–447, 469

sign convention for, 7

tangential (t) components of, 

57–58, 138–143, 175, 325–326, 

441–442

tangential force (tan) and, 152–156

three-dimensional rigid-body  

motion, 563–564, 580

time derivative and, 564

translating axes, 92, 373–380,  

405, 580

translation and, 321, 380–381, 405, 

423, 426–431, 469

velocity (v) and, 7–8

Amplitude of vibration, 645–646

Angular acceleration ( ), 73, 323, 409, 

563–564

Angular displacement (du), 322

Angular impulse, 284–289

Angular momentum (H), 280–289, 

315, 518–522, 523–524, 540–543, 

544–547, 556–557, 601–604,  

629, 640

angular impulse and, 284–289, 315

arbitrary point A for, 602

center of mass (G) for, 601–602

conservation of, 286, 540–543, 557

eccentric impact and,  

544–547, 557

fixed-axis rotation and, 520, 556

fixed-point O for, 602

free-body diagrams for,  

280–281, 286

general plane motion and,  

521, 556

gyroscopic motion and, 629

kinetics of a particle, 280–289

magnitude of, 280

moment of a force relations with, 

281–283

moment of momentum, 280, 315

principle axes of inertia from, 603

principle of impulse and, 284–289, 

315, 523–524, 604, 640

procedures for analysis of,  

286, 541

rectangular components of  

momentum, 602–603

right-hand rule for, 280

rigid-body planar motion, 

518–522, 523–524, 540–547, 

556–557

scalar formulation, 280, 285

system of particles, 282, 284–285

three-dimensional rigid bodies, 

601–604, 629, 640

translation and, 520, 556

units of, 280

vector formulation, 280, 285

Angular motion, 322–323, 327, 338, 

404, 563–564

Angular position (u), 322

Angular velocity (v), 72, 322, 544–547, 

563–564, 626–628

Apogee, 169

Areal velocity, 164

Average acceleration, 7, 35

Average speed, 6

Average velocity, 6, 34

Axes, 91–95, 109, 320, 322–329, 346–

352, 373–380, 389–397, 404–405, 

441–447, 469, 475, 511, 520, 556, 

594–595, 612–616

angular motion and, 322–323, 327

circular motion and, 324–327, 

373–375

coordinating fixed and translat-

ing reference frames, 346–352, 

373–380, 404–405

equations of motion for, 441–447, 

469, 612–616
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Axes (continued)

Euler’s equations for, 614–615

fixed, rotation about, 320, 

322–329, 404, 441–447, 469, 475, 

614–616

fixed reference frame, 91–95

impulse and momentum of,  

520, 556

inertia (I), principle axes of, 594–595

kinematics of a particle, 91–95, 109

kinematics of rigid bodies, 320, 

322–329, 346–352, 373–380, 

389–397, 404–405

kinetic energy and, 475, 511

moments of inertia (I) about, 

442–443, 594–595

planes of symmetry, 595

pinned-end members, 346–352, 

373–380

relative-motion analysis of,  

91–95, 109, 346–352, 373–380, 

389–397, 405

rigid-body planar motion,  

441–447, 469, 475, 511, 520, 556

rotating, 389–397, 405, 612–613

rotation about, 320, 322–329, 

346–352, 373–380, 404, 441–447, 

469, 475, 511, 520, 556

symmetrical spinning axes, 

615–616

three-dimensional rigid-body  

motion, 594–595, 612–616

translating, 91–95, 109, 389–397, 405

translation for, 346–352,  

373–380, 405

Axis of rotation, 564, 569

B
Body cone, 634

C
Cartesian vector notation, 685

Center of curvature, 56

Center of mass (G), 119, 518–519, 

601–602, 605

Central impact, 266–268, 269, 314–315

Central-force motion, 164–170, 175

areal velocity, 164

circular orbit, 168

directrix, 166

eccentricity (e), 166–167

elliptical orbit, 169–170

equations of motion, 164–166

focus (F), 166

gravitational (G) attraction, 165–166

Kepler’s laws, 170

parabolic path, 168

path of motion, 164–165

space mechanics and, 164–170

trajectories, 165–170, 175

Centripetal acceleration, 58

Centripetal force, 138–143

Centrode, 362

Chain rule, 689–691

Circular motion, 324–327, 347–348, 

360–366, 373–375, 405

acceleration (a), 325–326, 373–375

instantaneous center (IC) of zero 

velocity, 360–366, 405

planar rigid-body motion, 

324–326, 347–348, 373–375

position and displacement  

from, 324

procedures for analysis of, 327, 362

relative-motion analysis of, 

347–348, 373–375

relative velocity and, 347–348

rotation about a fixed axis, 

324–327

slipping and, 348, 374

velocity (v), 324, 347–348, 

360–366, 405

Circular orbit, 168

Circular path of a point, 324–326, 360, 

374, 441

Closed volume, 295

Coefficient of restitution, 267–269, 

297, 315, 544–547, 557

Coefficient of viscous damping, 667

Composite bodies, moment of inertia 

for, 415

Conservation of energy, 217–221, 233, 

496–501, 513, 657–660, 680

conservative forces and, 217–221, 

233, 496–501, 657

differential equations for, 657

elastic potential energy, 496, 513

gravitational potential energy, 

496, 513

kinetic energy and, 217–218

kinetics of a particle,  

217–221, 233

natural frequency (vn) from, 

657–660, 680

potential energy (V) and, 

217–221, 233, 496–501, 513

procedures for analysis using, 218, 

498, 658

rigid-body planar motion, 

496–501, 513

system of particles, 218

vibration and, 657–660, 680

weight (W), displacement of, 217

work (W) and, 217–221, 233, 

496–501, 513

Conservation of momentum, 254–260, 

267, 269–272, 286, 314–315, 

540–543, 557

angular, 286, 540–543, 557

impact and, 267, 269–272, 314–315

impulsive forces and, 254–255

kinetics of particles, 254–260, 267, 

269–272, 268, 296

linear, 254–260, 267, 269–272, 314, 

540–543, 557

particle systems, 254–260, 286

procedures for analysis of, 255, 

269, 286, 541

rigid-body planar motion, 

540–543, 557

Conservative force, 213–221, 233, 

496–501, 513, 657

conservation of energy, 217–221, 

233, 496–501, 513, 657

elastic potential energy,  

214, 496, 513

friction force compared to, 213, 233

gravitational potential energy, 

213, 496, 513

potential energy (V) and, 

213–216, 233, 496–501, 513

potential function for, 215–216

spring force as, 213–216, 233,  

496, 513

vibration and, 657

weight (W), displacement of, 213, 

215–216, 233

work (U) and, 213–216,  

496–501, 513

Constant acceleration, 8, 323
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Constant force, work of, 181, 213, 232, 

476, 512

Constant velocity, 7

Continuous motion, 5–14, 106

acceleration (a), 7–8

displacement (Δ), 5

particle rectilinear kinematics 

and, 5–14

position (s), 5, 8

procedure for analysis of, 9

rectilinear kinematics of,  

5–14, 106

velocity (v), 6–8

Control volume, 295–304, 315

fluid streams, 295–299

gain of mass (m), 301–302, 315

kinematics of a particle,  

295–304, 315

loss of mass (m), 300–301, 315

mass flow, 296–297, 300–302

principles of impulse and  

momentum for, 295–299

procedure for analysis of, 297

propulsion and, 300–304, 315

steady flow, 295–299, 315

thrust (T), 300–301

volumetric flow (discharge), 297

Coordinates, 5, 36–40, 56–58, 71–78, 

85–91, 107–109, 120–126, 138–

143, 152–156, 175, 322, 324–326, 

346, 404, 423–426, 569–571, 578, 

601–603, 614–616, 641

acceleration (a) and, 37, 57–58, 

73, 120–126, 138–143, 152–156, 

175, 325–326

angular motion, 322

angular momentum (H) and, 

601–603

centripetal force, 138–143

circular motion, 324–326

continuous motion, 5

coordinating fixed and  

translating reference frames, 

346, 404

curvilinear motion, 36–40, 56–58, 

71–78, 107–108

cylindrical (r, u, z), 74, 152–156, 175

dependent motion analysis and, 

85–90, 109

directional angle (c), 152–153

equations of motion and, 

120–126, 138–143, 152–156, 

175, 423–426, 614–616, 641

fixed origin (O), 5

force (F) and, 120–126, 138–143

frictional forces (F) and, 152

kinematics of a particle, 5, 36–40, 

56–58, 71–78, 85–90, 107–109

kinetics of a particle, 120–126, 

138–143, 152–156, 175

normal (n), 56–58, 108, 138–143, 

175, 325–326

normal forces (N) and, 152

planar motion, 56–58

polar, 67–70

position (s), 5

position-coordinate equations, 

85–90, 109

position vector (r), 36, 72, 91, 324

procedures for analysis using, 38, 

58, 74, 120–121, 139, 153

radial (r), 71–73

rectangular (x, y, z), 36–40, 

107, 120–126, 175, 423–426, 

602–603, 614–616, 641

relative-motion analysis and, 91, 

109, 346, 578

rigid-body planar motion, 

423–426

tangential (t), 56–58, 108, 138–143, 

175, 325–326

tangential forces (tan) and, 

152–153

three-dimensional motion, 

58, 569–571, 578, 601–603, 

614–616, 641

translating axes and, 91, 109

translating systems, 569–571, 578

transverse (u), 71–73

velocity (v) and, 36–37, 56, 72, 324

Coriolis acceleration, 393, 405

Couple moment (M), work (W) of a, 

478–479, 512

Critical damping coefficient, 668

Critically damped vibration systems, 668

Cross product, 685–686

Curvilinear motion, 34–40, 56–62, 

71–78, 107–108

acceleration (a), 35, 37, 57–58, 73

center of curvature, 56

coordinates for, 36–40, 56–59, 

71–78, 107–108

cylindrical components, 71–78, 108

cylindrical (r, u, z) coordinates, 74

displacement (Δ), 34

general, 34–40

normal (n) axes, 56–62, 108

kinematics of a particle, 34–40, 

56–62, 71–78, 107–108

planar motion, 56–58

polar coordinates, 71–73, 108

position (s), 34, 36, 72

procedures for analysis of, 38, 

59, 74

radial coordinate (r), 71–73

radius of curvature ( ), 56

rectangular (x, y, z) coordinates, 

36–40, 107

tangential (t) axes, 56–62, 108

time derivatives of, 74

three-dimensional motion, 58

transverse coordinate (u), 71–73

velocity (v), 34–37, 56, 72

Curvilinear translation, 320–321, 404, 

427, 469

Cycle, 646

Cylindrical components, 71–78, 108, 

152–156, 175

acceleration (a) and,  

73, 152–156, 175

curvilinear motion, 71–78, 108

directional angle (c), 152–153

cylindrical (r, u, z) coordinates, 74, 

152–156, 175

equations of motion and,  

152–156, 175

normal force (N) and, 152–156

polar coordinates for, 71–73, 108

position vector (r) for 72

procedures for analysis using, 74, 153

tangential force and, 152–156

time derivatives of, 74

velocity (v) and, 72

D
D’Alembert principle, 116

Damped vibrations, 643, 667–672, 681

critically damped systems, 668

motion of, 643

overdamped systems, 668
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Damped vibrations (continued) 

resonance from, 665, 681

underdamped systems, 669

viscous forced, 670–672, 681

viscous free, 667–669, 681

Damping factor, 669

Dashpot, 667

Deceleration, 7

Deformation, 186–187, 266–272, 544–547

angular velocity (v) and, 544–547

coefficient of restitution (e), 

267–268, 544–547

eccentric impact and, 544–547

friction force and, 187

impact and, 266–272, 544–547

localized, 187

maximum, 266

period of, 266

principles of work and energy 

and, 186–187

restitution phase, 266–269, 544

separation of contact points, 546

Dependent motion analysis, 85–90, 109

particles, 85–90, 109

position coordinates for, 85–86, 109

procedure for, 86

time derivatives for, 86, 109

Derivative equations, 682

Diagrams for impulse and  

momentum, 238–239

Directional angle (c), 152–153

Directrix, 166

Disk elements, moment of inertia for, 411

Displacement ( ), 5, 21, 34, 179–180, 

322, 324, 346, 477–478, 512, 

644–651, 665

amplitude, 645–646

angular (du), 322

circular motion and, 324

couple moment (M) and, 478, 512

curvilinear motion, 34

erratic motion, 21

kinematics of a particle, 5, 21, 34

periodic support and, 665

planar kinematics of rigid bodies 

and, 322, 324, 346

position change as, 5, 322, 324

relative-motion analysis and, 346

right-hand rule for direction of, 

322, 324

rotation about a fixed point, 322, 324

simple harmonic motion, 644

spring force, 477

translation and rotation causing, 346

vertical, 477

vibrations and, 644–651, 665

work of a force and, 179–180, 

477–478

work of a weight and, 477

Dot notation, 36–37

Dot product, 180, 687–688

Dynamic equilibrium, 116

Dynamics, 3–4

principles of, 3–4

procedure for problem solving, 4

study of, 3

E
Eccentric impact, 544–547, 557

Eccentricity (e), 166–167

Efficiency (e), 204–207, 233

energy (E) and, 204–207, 233

mechanical, 204–205

power (P) and, 204–207, 233

procedure for analysis of, 205

Elastic impact, 268

Elastic potential energy, 214, 233, 496, 513

Electrical circuit analogs, vibrations 

and, 673, 681

Elliptical orbit, 169–170

Energy (E), 178–235, 472–515, 

604–607, 640–641, 657–660

conservation of, 217–221, 233, 

496–501, 513, 657–660

efficiency (e) and, 204–207, 233

elastic potential, 213–214, 496, 513

gravitational potential, 213, 496, 513

internal, 187

kinetic, 184–185, 213, 217–221, 

232, 473–476, 480–486, 498, 

511, 604–607, 640

kinetics of a particle, 178–235

natural frequency (vn) and, 

657–660, 680

potential (V), 213–221, 233, 

496–501, 513

power (P) and, 204–207, 233

principle of work and, 184–192, 

232–233, 480–486, 513, 615, 

640–641

procedures for analysis of, 185, 

205, 218, 481, 498

rigid-body planar motion and, 

472–515

systems of particles, 186–192

three-dimensional rigid bodies, 

604–607, 640–641

work (U) and, 178–235, 472–515

vibration and, 657–660

Equations of motion, 114–115, 116–

126, 138–143, 152–156, 164–166, 

175, 237–239, 423–431, 441–447, 

456–461, 469, 612–621, 641

acceleration (a) and, 114–126, 

138–143, 152–156, 423–431, 

441–447, 469

central-force motion, 164–166, 

175

centripetal force, 138–143

cylindrical (r, u, z) coordinates, 

152–156, 175

equilibrium and, 116

external force, 118–119, 424–425

fixed-axis rotation, 441–447, 469, 

614–616

force (F) and, 114–126, 138–143, 

152–156, 423–431 441–447, 469

free-body diagrams for, 116–117, 

175, 423–428

friction (F) force, 121, 152

general plane motion, 426, 

456–461, 469

gravitational attraction, 114–115

inertial reference frame for, 

116–117, 175, 423–426, 

612–613

instantaneous center (IC) of zero 

velocity and, 456

internal force, 118–119, 424–425

kinetic diagram for, 116

kinetics of a particle, 114–126, 

138–143, 152–156, 164–166, 

175

linear impulse and momentum, 

237–239

mass (m) and, 113–115, 118–119

moment equations, 442, 456

moments of inertia (I) and, 

442–443, 456–457

Newton’s second law, 115, 175
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normal (n) coordinates, 138–143, 

175, 441–442

normal (N) force, 152–156, 175

procedures for analysis using, 

120–121, 139, 153, 428, 443, 

457, 616

rectangular (x, y, z) coordi-

nates, 120–126, 175, 423–426, 

612–615, 641

rigid-body planar motion, 423–

431, 441–447, 456–461, 469

rotational motion, 424–425, 

441–447, 469, 612–613, 641

slipping and, 456

spring force, 121

static equilibrium conditions, 116

symmetrical spinning axes, 

615–616

symmetry of reference frames for, 

423–426

systems of particles, 118–119

tangential (t) coordinates, 

138–143, 175, 441–442

tangential force, 152–156, 175

three-dimensional rigid bodies, 

612–621, 641

trajectories, 165–166

translational motion, 423, 

426–431, 469, 612, 641

Equilibrium, equations of motion  

and, 116

Equilibrium position, vibrations, 

644–646

Erratic motion, 20–25, 106

a–s (acceleration–position), 22

a–t (acceleration–time), 20–21

integration of equations for, 21

particle rectilinear kinematics for, 

20–25, 106

s–t (position–time), 20–21

v–s (velocity–position), 22

v–t (velocity–time), 20–21

Escape velocity, 168

Euler angles, 626

Euler’s equations, 614–615

Euler’s theorem, 562

External force, 118–119, 282, 240, 

423–425

External impulses, 254

External work, 187

F
Finite rotation, 562

Fixed-axis rotation, 320, 322–329, 404, 

441–447, 469, 475, 511, 520, 556, 

614–616

acceleration (a) of, 323, 325–327, 

404, 441–447, 469

angular acceleration (a) 323

angular displacement (du), 322

angular motion and, 322–323,  

327, 404

angular position (u), 322

angular velocity (v), 322

circular motion, 324–327

circular path of a point, 324–326, 441

equations of motion for, 441–447, 

469, 614–616

Euler’s equations for, 615–616

force (F) of, 441–447, 469

impulse and momentum for, 520, 

556

kinetic energy and, 475, 511

magnitude of, 441–442

moment equation about point 

O, 442

normal (n) coordinates, 325–326, 

441–442

position and displacement, 322, 324

procedure for analysis of, 327, 443

right-hand rule for, 322, 324

rigid-body planar motion, 320, 

322–329, 404, 441–447, 475, 511, 

520, 556

tangential (t) coordinates 

325–326, 441–442

three-dimensional rigid bodies, 

614–616

velocity (v) of, 322, 324, 404

Fixed origin (O), 5

Fixed-point rotation, 561–568, 589, 

602, 605, 626–631

acceleration (a) and, 564

angular acceleration (a) of, 

563–564

angular momentum (H) and, 602

angular velocity (v) of, 563–564, 

626–628

Euler’s angles for, 626

Euler’s theorem for, 562

finite rotation, 562

gyroscopic motion, 626–631

infinitesimal rotation, 563

kinetic energy and, 605

rotational displacements, 560–564

sphere as representation of,  

563, 589

three-dimensional rigid bodies, 

561–568, 589, 602, 605, 626–631

time derivatives for, 564–568, 589

velocity (v) and, 564

Fixed reference frame, 91–95

Fluid stream, steady flow of, 295–299, 

315

Focus (F), 166

Force (F), 112–177, 179–192, 213–221, 

232–233, 254–255, 281–283, 300–

304, 408–471, 476–479, 496–501, 

512, 643–644, 657, 663–667. See 
also Central-force motion

acceleration (a) and, 112–177, 

408–471

angular momentum relations 

with, 281–283

central-force motion and, 164–170

centripetal, 138–143

conservation of energy and, 

217–221, 233, 496–501, 657

conservation of linear momentum 

and, 254–255

conservative, 213–221, 233, 

496–501, 657

constant, 181, 213, 232, 476, 512

couple moment (M) and, 

478–479, 512

displacement (Δ) of, 478, 512

equations of motion for, 114, 

116–126, 138–143, 152–156, 

423–431, 441–447, 456–461, 469

external, 118–119, 240, 282, 

423–425

fixed-axis rotation and, 441–447, 469

free-body diagrams for, 116–117, 

175, 423–428

friction (F), 121, 152, 187, 213, 233

general plane motion and, 456–461

gravitational attraction and, 

114–115

impulsive, 254–255

inertia force vector, 116

internal,118–119, 282, 424–425
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Force (F) (continued)

particle kinetics, 112–177, 179–192, 

213–216, 232–233, 281–283

potential energy (V) and, 

213–216, 233, 496–501

mass (m) and, 113–114

moments of a, 281–283

moments of inertia (I) and, 

409–417, 456–457, 469

Newton’s laws and, 113–115, 175

normal (N), 152

periodic, 663–666

planar motion and, 408–471, 

476–479, 512

potential energy (V) and, 

213–216, 233

propulsion and, 300–304

resultant, 116, 187, 281–282

rigid-body kinetics, 408–471, 

476–479, 512

rotation and, 424–425, 441–447, 469

slipping (no work) and, 456, 477, 

512

spring, 121, 182–183, 214, 232–233, 

477, 512, 644

system of particles, 118–119, 

184–192, 254–255

tangential, 152–153

thrust, 300–301

trajectories, 165–170, 175

translation and, 423, 426–431, 

469

unbalanced, 113–114

units of, 180

variable, 180, 476

vibrations and, 643–644, 657, 

663–667

viscous damping, 667

weight (W), 115, 181, 213, 

215–216, 232–233, 477, 512

work (U) of, 179–192, 213–216, 

232–233, 476–479, 512

Forced vibrations, 643, 663–666, 

670–672, 680–681

forcing frequency (v ) for, 

663–665, 680

motion of, 643

periodic force and, 663–666

periodic support displacement 

of, 665

undamped, 663–666, 680

viscous damped, 670–672, 681

Free-body diagrams, 116–117, 175, 241, 

280–281, 286, 423–428

angular momentum, 280–281, 286

equations of motion and, 116–117, 

423–428

inertial reference frames, 116–117, 

423–426

kinetics of particles using, 

116–117, 175

linear momentum, 241

rigid-body planar motion, 423–428

rotational motion, 424–425

translational motion, 423, 426–428

Free-flight trajectory, 166

Free vibrations, 643–651, 667–669, 

680–681

motion of, 643

undamped, 643–651, 680

viscous damped, 667–669, 681

Frequency (f), 644, 646–647, 657–660, 

663–665, 669, 680

damped natural (vd), 669

forcing (v ), 663–665, 680

natural (vn), 644, 646–647, 

657–660, 680

vibration and, 644, 646–647, 

663–665, 680

Friction force (F), 121, 152, 187, 213, 

233

conservative forces compared to, 

213, 233

equations of motion for, 121, 152

work of caused by sliding, 187

G
General plane motion, 320, 338–397, 

404–405, 456–461, 469, 475, 511, 

521, 556. See also Planar motion

absolute motion analysis for, 

338–341, 404

acceleration (a), 373–380, 

373–380, 392–393, 405, 456–461

displacement (Δ) from, 346

equations of motion for, 

456–461, 469

force (F) and, 456–461

impulse and momentum for,  

521, 556

instantaneous center (IC) of zero 

velocity, 360–366, 405, 456

kinetic energy and, 475, 511

moment equation about the  

instantaneous center (IC), 456

procedure for analysis of, 338, 

349, 375, 394, 457

relative-motion analysis for, 

346–352, 373–380, 389–397, 

404–405

rigid-body kinematics, 320, 338–352

rigid-body kinetics, 456–461, 469, 

475, 511, 521, 556

rotating axes, 389–397, 405

rotation and translation of, 

338–341

slipping and, 456

velocity (v), 346–352, 360–366, 

390–391, 405

General three-dimensional motion, 

564–568, 589

Graphs, 20–25, 106, 238, 314

erratic motion represented by, 20–25

impulse represented by, 238, 314

magnitude represented by, 238

rectilinear kinematic solutions 

using, 20–25, 106

Gravitational acceleration (g), 115

Gravitational attraction (G), 114–115, 

165–166

central-force motion and, 165–166

Newton’s law of, 114–115

Gravitational potential energy, 213, 

233, 496, 513

Gyroscopic motion, 615–616, 626–631, 

641

angular momentum (H) and, 629

angular velocity (v) and, 626–628

equations of motion for, 615–616

Euler angles for, 626

gyro, 629

gyroscopic effect, 628–629

symmetrical spinning axes, 615–616

H
Heat, friction forces from sliding  

and, 187

Hertz (Hz), unit of, 646

Hodographs, particle acceleration and, 35

Horizontal projectile motion, 41–45
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Horsepower (hp), unit of, 204

Hyperbolic functions, 682

I
Impact, 266–272, 314–315, 544–547, 557

central, 266–268, 268, 314–315

coefficient of restitution (e), 

267–269, 315, 544–547, 557

conservation of momentum, 267, 

269–272, 314–315

deformation and, 266–272, 544–547

eccentric, 544–547, 557

elastic, 268

energy loss from, 268, 270

kinetics of a particle, 266–272, 

314–315

line of impact, 266, 269, 314–315, 544

oblique, 266, 269, 315

plastic (inelastic), 268

procedures for analysis of, 269

restitution from, 266–269, 544

rigid-body planar motion, 

544–547, 557

separation of contact points due 

to, 546

Impulse, 236–317, 516–559, 604, 640

angular, 284–289, 296, 315, 523–524

conservation of angular momen-

tum and, 286

conservation of linear momentum 

and, 254–255

control volumes, 295–304, 315

diagrams, 239–240

equations of motion, 238–239

external forces, 240, 254

graphical representation of,  

238, 314

impact and, 266–272, 314–315, 

544–547

internal forces, 255–256

kinetics of a particle, 236–317

linear, 237–244, 296, 314, 523–524

magnitude of, 238

momentum and, 236–317, 516–559

principle of momentum and, 

237–244, 284–289, 295–299, 

314–315, 523–530, 556, 604, 640

procedures for analysis of, 241, 

255, 286, 525

propulsion and, 300–304, 315

restitution, 266, 545

rigid-body planar motion, 516–559

steady flow and, 295–299, 315

three-dimensional rigid bodies, 

604, 640

Impulsive forces, 254–255

Inertia (I), 409–417, 456–457, 469, 

591–596, 604, 640

acceleration (a) and, 409–417, 

456–457, 469

angular acceleration (a) and, 409

angular momentum (H) and, 604

arbitrary axis, moment of about, 595

composite bodies, 415

equations of motion and, 456–457

integration of, 410–411, 592

mass moments of, 409–417

moment of, 409–417, 456–457, 469, 

592, 592–597, 640

parallel-axis theorem, 414–415, 593

parallel-plane theorem, 594

principle axes of, 594–595, 603

procedure for analysis of, 411

product of, 592–593, 640

radius of gyration, 415

resistance of body to  

acceleration, 409

rigid-body planar motion and, 

409–417, 456–457, 469

tensor, 594–595

three-dimensional rigid-body  

motion, 591–596, 640

volume elements for integration 

of, 410–411

Inertial reference frames, 116–117, 

175, 423–426, 473–474, 612–613

angular momentum (H), 601–602

equations of motion, 116–117, 175, 

423–426, 612–613

force vector, 116

kinetic energy, 473–474

kinetics of a particle, 116–117, 175

rigid-body planar motion, 

423–426, 473

rotational motion, 424–425

slab in, 473–474

symmetry of, 423–426

three-dimensional rigid-body  

motion, 612–613

translational motion, 423

Infinitesimal rotation, 563

Instantaneous acceleration, 7, 35

Instantaneous center (IC), 360–366, 

405, 456

centrode, 362

circular motion and, 360–366, 405

general plane motion, 456

location of, 361–366

moment equation about, 456

procedure for analysis of, 362

zero velocity, 360–366, 405, 456

Instantaneous velocity, 6, 34

Integral equations, 683

Integration of equations, 21, 410–411, 

592, 604–605

erratic motion, 21

kinetic energy, 604–605

moment of inertia, 410–411, 592

Internal energy, 187

Internal force, 118–119, 282, 424–425

Internal impulses, 254–255

K
Kepler’s laws, 170

Kinematics, 2–111, 318–407, 560–589. 

See also Planar motion

continuous motion, 5–14

coordinates for, 36–38, 56–58, 

71–78, 107–108, 569–571

curvilinear motion, 34–40, 56–62, 

71–78, 107–108, 320–321

cylindrical components, 71–78, 108

cylindrical (r, u, z) coordinates, 74

dependent motion analysis, 

85–90, 109

erratic motion, 20–25

fixed-axis rotation, 320, 322–329, 404

fixed-point rotation, 561–568, 589

graphs for solution of, 20–25, 106

normal (n) axes, 56–62, 108

particles and, 2–111

planar, 318–407

polar coordinates, 71–73

procedures for analysis of, 9, 38, 

42, 59, 86, 92, 327, 338, 349, 362, 

375, 394, 581

projectile motion, 41–45, 107

radial (r) coordinate, 71–73

rectangular (x, y, z) coordinates, 

36–40, 107
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Kinematics (continued)

rectilinear, 5–15, 20–25, 106, 320–321

relative-motion analysis, 91–95, 

109, 346–352, 373–380, 389–397, 

405, 578–585, 589

rigid bodies, 318–407, 560–589

rotating axes, 389–397, 405, 

564–568, 578–585, 589

rotation and, 320, 322–329, 

338–341, 346–352, 404

sign conventions for, 5–7

tangential (t) axes, 56–62, 108

three-dimensional motion, 560–589

time derivative, 564–568

translating axes, 91–95, 109, 

389–397, 578–585, 589

translating-rotating systems, 

564–568

translation and, 320–321, 338–341, 

346–352, 404–405

transverse (u) coordinate, 71–73

Kinetic diagram, 116

Kinetic energy, 184–185, 213, 217–218, 

232, 473–476, 480–486, 511, 

604–607, 640–641

conservation of, 217–218

center of mass (G) for, 605

fixed-point O for, 605

general plane motion and, 475, 511

integration for, 604–605

particles, 184–185, 213, 217–218, 232

potential energy and, 213, 217–218

principle of work and energy, 

184–185, 232, 480–486, 605, 

640–641

procedure for analysis of, 481

rigid-body planar motion and, 

473–476, 480–486, 511

rotation about a fixed axis and, 

475, 511

slab in inertial reference for, 

473–474

system of bodies, 476

three-dimensional rigid-body 

 motion, 604–607, 640–641

translation for, 475, 511

Kinetics, 3, 112–177, 178–235, 236–317, 

408–471, 472–515, 516–559, 

590–641. See also Planar  

motion; Space mechanics

acceleration (a) and, 112–177, 

408–471

angular momentum (H), 280–289, 

315, 518–522, 523–524, 540–

543, 556–557, 601–604, 640

central-force motion, 164–170, 175

conservation of energy, 217–221, 233

conservation of momentum, 

254–260, 286, 314, 540–543, 557

conservative forces and,  

213–221, 233

control volumes, 295–304, 315

cylindrical (r, u, z) coordinates, 

152–156, 175

efficiency (e) and, 204–207, 233

energy (E) and, 178–235, 472–515, 

604–607

equations of motion, 114–126, 138–

143, 152–156, 423–431, 441–447, 

456–461, 469, 612–621, 641

force (F) and, 112–177, 179–183, 

213–221, 232–233, 408–471

free-body diagrams for, 116–117, 

175, 423–428

gyroscopic motion, 615–616, 

626–631, 641

impact and, 266–272, 314–315, 

544–547, 557

impulse and momentum, 236–317, 

516–559, 640

inertia (I), 409–417, 456–457, 469, 

591–596, 640

inertial reference frame for 

116–117, 175

linear momentum, 517, 520–522, 

540–543

mass moments of inertia,  

409–417, 469

Newton’s laws and, 113–115, 175

normal (n) coordinates, 138–143, 175

particles, 112–177, 178–235, 

236–317

planar motion, 408–471, 472–515, 

516–559

power (P), 204–207, 233

principle of, 3

principle of impulse and momen-

tum, 523–530, 640

principle of work and energy, 

184–192, 232, 605, 640–641

procedures for analysis of, 

120–121, 139, 153, 185, 205, 218, 

241, 255, 269, 286, 297, 411, 428, 

443, 457, 481, 525, 616

propulsion, 300–304, 315

rectangular (x, y, z) coordi-

nates, 120–126, 175, 602–603, 

614–616, 641

rigid-bodies, 408–471, 472–515, 

516–559, 590–641

rotation and, 424–425, 441–447, 

469, 520, 556

steady flow, 295–299, 315

tangential (t) coordinates, 

138–143, 175

three-dimensional rigid bodies, 

590–641

torque-free motion, 632–635, 641

trajectories, 165–170, 175

translation and, 423, 426–431, 469, 

520, 556

work (U) and, 178–235, 472–515, 

605, 640–641

L
Line of action, 361, 425

Line of impact, 266, 269, 314, 544

Linear impulse and momentum, 237–

244, 254–260, 314, 517, 520–522, 

523–524, 540–543, 556–557

conservation of momentum, 

254–260, 540–543, 557

diagrams for, 239–241

external force and, 240

fixed-axis rotation and, 520, 556

force (F) and, 237–244

impulsive forces and, 254–255

general plane motion and, 521, 556

kinetics of a particle, 237–244, 

254–260, 314

principle of impulse and, 237–244, 

523–524, 556

procedures for analysis of, 241, 

255, 541

rigid-body planar motion, 517, 

520–522, 540–543

systems of particles, 240–244, 

254–260, 314

translation and, 520, 556

vector, 238
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M
Magnification factor (MF), 664–665, 671

Magnitude, 5–7, 34, 36–37, 56–58, 

72–73, 108, 238, 280, 322, 361, 

373, 390, 392, 441–442, 478, 512

acceleration (a), 7, 37, 57–58, 73, 

373, 392, 441–442

angular displacement and, 322

angular momentum (H), 280

average speed, 6

constant, 478, 512

couple moment (M), work of and, 

478, 512

curvilinear motion and, 34, 36–37, 

56–58, 72–73, 108

distance as, 5

fixed-axis rotation and, 441–442

graphical representation of, 238

impulse, 238

instantaneous center (IC)  

location from, 361

position vector (r) and, 36

rectilinear kinematics and, 5–7

relative-motion analysis and, 373, 

390, 392

rotating axes, changes in motion 

from, 390, 392

rotation, changes in motion  

from, 322

speed as, 6, 34, 36, 57–58, 72

time rate of change of, 58

velocity (v), 6, 34, 36–37, 56, 72, 

361, 390

Mass (m), 113–115, 118–119, 296–297, 

300–304, 315, 409–417, 517–522

center (G) of, 119, 518–519

continuity of, 297

control volumes and, 296–297, 

300–304, 315

equations of motion and, 114–115, 

118–119

gain of, 301–302, 315

gravitational attraction and, 

114–115

loss of, 300–301, 315

moments (M) of inertia (I), 409–417

momentum and, 517–522

particle body, 113–115

propulsion and, 300–304, 315

Newton’s laws and, 113–115

rigid-body planar motion, 

409–417, 517–522

steady flow of fluid systems and, 

296–297, 315

system of particles and, 118–119

Mass flow, 296–297, 300–302

Mathematical expressions, 682–683

Maximum deformation, 266

Mechanical efficiency, 204–205

Mechanical energy, 217–221. See also 

Conservation of energy

Mechanics, study of, 3

Moment arm, 410

Moment of inertia, 409–417, 442–443, 

456–457, 469, 592–597, 640

acceleration (a) and, 409–417, 

442–443, 456–457, 469

arbitrary axis, about, 597

body resistance to acceleration, 409

composite bodies, 415

disk elements, 411

equations of motion and, 

442–443, 456–461

fixed-axis rotation, 442–443

force (F) and, 456–457

integration of, 410–411, 592

mass, 409–417

parallel-axis theorem for, 

414–415, 593

parallel-plane theorem for, 594

principal, 594, 640

procedure for analysis of, 411

radius of gyration for, 415

rigid-body planar motion,  

409–417, 442–443, 456–461, 469

shell elements, 411

slipping and, 456

three-dimensional rigid-body  

motion, 592–597, 640

volume elements for integration 

of, 410–411

Moments, work of a couple, 478–479, 512

Momentum, 236–317, 516–559, 

601–604, 640

angular (H), 280–289, 296, 315, 

518–522, 523–524, 540–543, 

556–557, 601–604, 640

conservation of, 254–260, 267, 

269–272, 286, 314, 540–543, 557

control volumes, 295–304, 315

diagrams, 234

equations of, 239

fixed-axes rotation and, 520

general plane motion and, 521

impact (eccentric) and, 266–272, 

314–315, 544–547, 557

impulse and, 236–317, 516–559

kinetics of a particle, 236–317

linear (L), 237–244, 254–260, 296, 

314, 517, 520–522, 523–524, 

540–543, 556–557

moments of force and, 281–283

principle of impulse and, 237–244, 

284–289, 295–299, 314–315, 

523–530, 556, 604, 640

procedures for analysis of, 241, 

255, 269, 286, 525, 541

propulsion and, 300–304, 315

rigid-body planar motion, 516–559

steady flow and, 295–299, 315

systems of particles, 240–244, 

254–260, 282, 314

three-dimensional rigid bodies, 

601–604, 640

translation and, 520

vector form, 238

N
Natural frequency (vn), 644, 646–647, 

657–660, 680

energy conservation and, 657–660

procedures for analysis of, 647, 658

undamped free vibration, 644, 

646–647, 680

Newton’s laws, 113–116, 175

body mass and weight from, 115

equation of motion, 114, 175

first law of motion, 116

gravitational attraction, 114–115

kinetics of particles and,  

113–115, 175

second law of motion, 113–115, 175

static equilibrium and, 116

Nonconservative force, 213

Nonimpulsive forces, 254

Nonrigid bodies, principle of work and 

energy for, 186

Normal (n) coordinates, 56–62, 

138–143, 175, 325–326, 441–442

acceleration (a) and, 57–58, 

325–326, 441–442
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Normal (n) coordinates (continued)

circular motion components, 

325–326

curvilinear motion components, 

56–62

equations of motion and,  

138–143, 175

particle kinetics, 138–143, 175

planar motion and, 56

procedure for analysis of, 59

rigid-body planar motion, 

325–326, 441–442

rotation about a fixed axis, 

325–326, 441–442

three-dimensional motion, 58

velocity (v) and, 56

Normal (N) force, 152

Nutation, 626

O
Oblique impact, 266, 269, 315

Orbit, trajectory and, 158–170

Osculating plane, 56

Overdamped vibration systems, 668

P
Parabolic path, 168

Parallel-axis theorem, 414–415, 593

Parallel-plane theorem, 594

Particles, 2–111, 112–177, 178–235, 

236–317

acceleration (a), 7–8, 35, 37, 57–58, 

73, 92, 106, 112–177

angular momentum (H) of, 

280–289, 314

central-force motion of, 164–170, 175

conservation of energy, 217–221, 233

conservation of angular 

 momentum, 286, 315

conservation of linear momen-

tum, 254–260, 267, 269–272, 315

conservative forces and,  

213–221, 233

continuous motion of, 5–14

control volume, 295–304, 315

coordinates for, 36–38, 56–58, 

71–78, 107–109, 120–126, 

138–143, 152–156

curvilinear motion of, 34–40, 

56–62, 71–78, 107–108

dependent motion analysis, 

85–90, 109

deformation of, 186–187, 266–272

displacement (Δ), 5, 34

energy (E) and, 178–235

equations of motion, 114–126, 

138–143, 152–156, 164–165, 175

erratic motion of, 20–25, 106

force (F) and, 112–177, 179–183, 

213–221, 233

free-body diagrams, 116–117, 175

gravitational attraction (G), 

114–115, 165–166

hodographs, 35

impact, 266–272, 314–315

impulse and momentum of, 

236–317

inertial reference frame, 116–117, 175

kinematics of, 2–111

kinetic energy of, 184–185, 213, 

217–218

kinetics of, 112–177, 178–235, 

236–317

mass (m), 113–115

Newton’s second law of motion, 

113–115, 175

planar motion of, 56–58

position (s), 5, 8, 34, 36, 72, 91, 106

position-coordinate equations, 

85–90

potential energy of, 213–221

power (P) and, 204–207, 233

principle of work and energy for, 

184–192, 233

principles of impulse and  

momentum, 237–244, 284–289

procedures for analysis of, 9, 38, 

42, 58, 74, 86, 92, 120–121, 139, 

153, 185, 205, 218, 241, 255, 269, 

286, 297

projectile motion of, 41–45, 107

propulsion of, 300–304, 315

rectilinear kinematics of, 5–14, 

20–25, 106

relative motion analysis, 91–95, 109

speed (magnitude), 6, 34, 36, 37, 72

system of, 118–119, 186–192, 

240–244, 254–260, 314

three-dimensional motion of, 58

time derivatives, 74, 86

translating axes, two particles on, 

91–95, 109

velocity (v), 6–8, 34–37, 56, 72, 91, 106

work (U) and, 178–235

Path of motion, 164–165

Perigee, 169

Period of deformation, 266

Period of vibration, 646

Periodic force, 663–666

Periodic support displacement, 665

Phase angle ( ), 647

Pinned-end members, 346–352, 373–380

acceleration (a) and, 373–380

relative-motion analysis of, 

346–352, 373–380

velocity (v) and, 346–352

Planar motion, 56–58, 318–407, 

408–471, 472–515, 516–559

absolute (dependent) motion 

analysis, 338–341, 404

acceleration (a) and, 57–58, 

321, 323, 325–326, 373–380, 

392–393, 404–405, 408–471

angular motion and, 322–323, 404

conservation of energy, 496–501, 513

conservation of momentum, 

540–543, 557

couple moment (M) in, 478–479, 512

curvilinear, 56–58

displacement, 322, 324, 346

energy (E) and, 472–515

equations of motion for, 423–431, 

441–447, 456–461, 469

fixed-axis rotation, 320, 322–329, 

404, 441–447, 469, 520, 556

force (F) and, 408–471, 476–479, 512

general, 320, 338–397, 404–405, 

456–461, 469, 521, 556

impact (eccentric), 544–547, 557

impulse and momentum, 516–559

instantaneous center of zero 

velocity, 360–366, 405, 456

kinematics, 56–58, 318–407

kinetic energy and, 473–476, 

480–481, 511

kinetics, 408–471, 472–515, 516–559

moment of inertia (I) for, 409–417, 

442–443, 456–457, 469

normal component (n) coordi-

nates, 56–58, 441–442
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position (r) and, 321, 322, 324, 

346, 389

potential energy (V) of,  

496–501, 513

principles of impulse and  

momentum, 523–530, 556

principle of work and energy, 

480–486, 513

procedures for analysis of, 327, 

338, 349, 362, 375, 394, 411, 

428, 443, 457, 481, 498, 525, 541

relative-motion analysis, 346–352, 

373–380, 389–397, 405

rigid bodies, 318–407, 408–471, 

472–515

rotation and, 320, 322–329, 338–

341, 346–352, 373–380, 404–405, 

424–425, 441–447, 469, 520

rotating axes, 389–397, 405

tangential component (t) 

 coordinates, 56–58, 441–442

translation, 320–321, 338–341, 338–

341, 346–352, 373–380, 404–405, 

423, 426–431, 469, 520, 556

velocity (v) and, 56, 321, 322, 324, 

346–352, 360–366, 390–391, 

404–405

work (U) and, 472–515

Plastic (inelastic) impact, 268

Polar coordinates, 71–73, 108

Position (s), 5, 8, 20–22, 34, 36, 72, 

85–90, 91–95, 106, 109, 321, 322, 

324, 346, 389, 579

absolute dependent motion and, 

85–90

angular (u), 322

continuous motion and, 5, 8

coordinate, 5

curvilinear motion and, 34, 36, 72

dependent-motion analysis and, 

85–90, 109

displacement (Δ) from changes of, 

5, 322, 324

erratic motion and, 20–22

graphs of variables, 20–22

kinematics of particles and, 5, 8, 

34, 72, 91–95

magnitude and, 36

planar kinematics of rigid bodies 

and, 321, 322, 324, 346, 389

position-coordinate equations, 

85–90, 109

rectangular components, 36

rectilinear kinematics and, 5, 8, 

20–22, 106

relative-motion analysis and, 

91–95, 109, 346, 389, 579

rotating axes, 389, 579

rotation about fixed axis,  

322, 324, 346

three-dimensional rigid-body 

motion, 579

time (t), as a function of, 8

translating axes, 91–95, 579

translation and, 321, 346

vectors (r), 34, 36, 72, 91, 321,  

346, 389

velocity (v) as a function of, 8, 91

Position coordinate origin (O), 5

Potential energy (V), 213–221, 233, 

496–501, 513

conservation of energy and, 

217–221, 233, 496–501, 513

conservative forces and, 213–216, 

233, 496–501, 513

elastic, 214, 233, 496, 513

equations for conservation of, 497

gravitational, 213–214, 233, 496, 513

kinetic energy and, 213, 217–218

particles, 213–216, 233

potential function for, 215–216

procedure for analysis of, 218, 498

rigid-body planar motion, 

496–501, 513

spring force and, 213–216, 233, 

496, 513

weight (W), displacement of, 213, 

215–216, 233, 496

work (U) and, 213–216

Power (P), 204–207, 233

efficiency (e) and, 204–207, 233

energy (E) and, 204–207, 233

procedure for analysis of, 205

units of, 204

Power-flight trajectory, 167

Power-series expansions, 682

Precession, 626, 633–634

Principal moments of inertia, 594, 640

Principle axes of inertia (I),  

594–595, 603

Principle of work and energy, 184–192, 

232–233, 480–486, 513, 605, 

640–641

deformation and, 186–187

equation for, 184, 232

kinetic energy and, 184–185, 232, 

480–486, 513, 605, 640–641

kinetics of particles, 184–192, 

232–233

procedures for analysis using,  

185, 481

rigid-body planar motion, 

480–486, 513

three-dimensional rigid bodies, 

605, 640–641

systems of particles, 186–192

units of, 184

work of friction caused by  

sliding, 187

Principles of impulse and  

momentum, 237–244, 284–289, 

295–299, 314–315, 523–530, 

556, 604, 640

angular, 284–289, 296, 315, 

523–530, 556

diagrams for, 238–239

external forces, 240

kinetics of particles, 237–244, 

284–289, 314–315

linear, 237–244, 296, 314, 523–530, 

556

procedures for analysis using, 241, 

286, 525

steady flow and, 295–299

systems of particles, 240–244

three-dimensional rigid-body  

motion, 604, 640

Problem solving procedure, 4

Product of inertia, 592–593, 640

Projectile motion, 41–45, 107

horizontal, 41

particle kinematics and,  

41–45, 107

procedure for analysis of, 42

vertical, 41

Propulsion, 300–304, 315. See also 

Control volume

Q
Quadratic formula, 682
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R
Radial component (vr), 72

Radial coordinate (r), 71–73

Radius of curvature ( ), 56

Radius of gyration, 415

Rectangular (x, y, z) coordinates,  

36–40, 107, 120–126, 175, 

602–603, 614–616, 641

angular momentum components, 

602–603

curvilinear motion, 36–40, 107

dot notation for, 36–37

equations of motion and, 

120–126, 175, 614–616, 641

kinematics of a particle, 36–40, 107

kinetics of a particle, 120–126, 175

procedures for analysis using, 38, 

120–121

three-dimensional rigid-plane 

motion and, 602–603,  

614–616, 641

Rectilinear kinematics, 5–15,  

20–25, 106

acceleration (a), 7–8, 20–22, 106

continuous motion, 5–15

displacement (Δ), 5

erratic motion, 20–25

graphs for solution of, 20–25, 106

particles and, 5–15, 20–25, 106

position (s), 5, 8, 20–22, 106

procedure for analysis of, 9

sign conventions for, 5–7

time (t) and, 8, 20–21, 106

velocity (v), 6–8, 20–22, 106

Rectilinear translation, 320–321, 404, 

426–427, 469

Reference frames, 91–95, 116–117, 

175, 322–329, 346–352, 404–405, 

423–426, 564–568

angular motion and, 322–324

axis of rotation, 564

circular path, 324–326

coordinating fixed and translating 

axes, 346–352, 405

equations of motion and, 116–117, 

175, 423–426

fixed, 91–95, 322–329, 404, 564–568

inertial, 116–117, 175, 423

kinetics of particles, 116–117, 175

relative-motion analysis, 346–352

relative motion of particles using, 

91–95

rigid-body planar motion, 423–425

rotation about fixed axis, 322–329

rotational motion, 424–425

three-dimensional rigid-body  

motion, 564–568

time derivative from, 564–568

translational motion, 423

translating, 91–95

translating-rotating systems, 

564–568

symmetry of, 423–426

Relative acceleration, 92, 405

Relative-motion analysis, 91–95, 109, 

346–352, 360–366, 373–380, 

389–397, 405, 578–585, 589

acceleration (a) and, 92, 373–380, 

392–393, 405, 580

circular motion, 347–348, 

360–366, 373–375, 405

coordinating fixed and translat-

ing reference frames, 346–352, 

373–380, 405

displacement and, 346

instantaneous center (IC) of zero 

velocity, 360–366, 405

kinematics of a particle,  

91–95, 109

pinned-end members, 346–352, 

373–380

position vectors (r) and, 91, 346, 

389, 579

procedures for analysis using, 92, 

349, 375, 394, 581

rigid-body planar motion, 

346–352, 360–366, 373–380, 

389–397, 405

rotating axes, 389–397, 405, 

578–585, 589

rotation and, 346–352, 373–380, 405

three-dimensional rigid-body  

motion, 578–585, 589

translating axes, 91–95, 109, 346–

352, 373–380, 405, 578–585, 589

translating coordinate system  

for, 578

velocity (v) and, 91, 346–352, 

360–366, 390–391, 405, 579

Relative velocity, 91, 347–348, 405

Resonance, 665, 681

Restitution, 266–269, 544–547

angular velocity (v) and, 544–547

coefficient (e) of, 267–269, 544–547

deformation from impact, 

266–269, 544–547

eccentric impact and, 544–547

impulse, 266, 545

period of, 266, 544

rigid-body planar motion, 544–547

Resultant force, 116, 187, 281–282

Retrograde precession, 634

Right-hand rule, 280, 322, 324

Rigid bodies, 186, 318–407, 408–471, 

472–515, 516–559, 560–589, 

590–641

absolute (dependent) motion 

analysis, 338–341, 402

acceleration (a) and, 321, 322, 

325–326, 373–380, 392–393, 

404–405, 408–471, 580

angular motion, 322–323, 327, 

561–564

circular motion, 324–327, 347–348, 

360–366, 373–375, 404–405

conservation of energy,  

496–501, 513

conservation of momentum, 

540–543, 557

couple moment (M) in,  

478–479, 512

displacement (Δ) of, 322, 324, 

477–478, 512

energy (E) and, 472–515

equations of motion for, 

421–431, 441–447, 456–461, 

469, 612–621, 641

fixed-axis rotation, 320, 322–329, 

404, 441–447, 469, 475, 511, 556

fixed-point rotation, 561–568, 589, 

602, 605

force (F) and, 408–471, 476–479, 512

free-body diagrams for, 423–428

general plane motion, 320, 

338–352, 456–461, 469, 475, 

511, 521, 556

gyroscopic motion, 626–631, 641

impact (eccentric), 544–547, 557

impulse and momentum, 516–559, 

601–604, 640
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inertia and, 591–596, 640

instantaneous center (IC) of zero 

velocity, 360–366, 405, 456

kinematics of, 318–407, 560–589

kinetic energy and, 473–476, 511, 

604–607, 640–641

kinetics of, 408–471, 472–515, 

516–559, 590–641

moments of inertia (I) for, 

409–417, 442–443, 456–457, 469

planar motion, 318–407, 408–471, 

472–515

position (r), 321, 322, 324, 389, 579

potential energy (V) of,  

496–501, 513

principle of impulse and momen-

tum, 523–530

principle of work and energy, 186, 

480–486, 513

procedures for analysis of, 327, 338, 

349, 362, 375, 394, 428, 443, 457, 

481, 498, 525, 541, 581, 616

relative-motion analysis, 

346–352, 373–380, 389–397, 

405, 578–585, 589

rotating axes, 389–397, 405, 

578–585, 589

rotation of, 320, 322–329, 338–331, 

346–352, 373–380, 404–405, 

424–425, 441–447, 469, 475, 511, 

520, 556

systems of particles and, 186, 476

three-dimensional, 560–589, 

590–641

time derivatives for, 564–568, 589

torque-free motion, 632–635, 641

translating axes, 389–397, 405, 

578–585, 589

translation of, 320–321, 338–341, 

346–352, 373–380, 404–405, 423, 

426–431, 469, 475, 511, 520, 556

velocity (v), 321, 322, 324, 346–352, 

360–366, 390–391, 404–405, 579

work (U) and, 472–515

zero velocity, 360–366, 405

Rotating axes, 389–397, 405, 564–568, 

578–585, 589

acceleration (a) of, 392–393, 580

axis of rotation, 564

Coriolis acceleration of, 393, 405

fixed reference frame, 564–568

magnitude changes and, 390, 392

position vectors (r) for, 389, 579

procedure for analysis of, 394, 581

relative-motion analysis for, 

389–397, 405, 578–585, 589

three-dimensional motion and, 

564–568, 578–585, 589

time derivatives for, 564–568

translating-rotating systems, 

564–568

velocity (v) of, 390–391, 579

Rotation, 320, 322–329, 338–341, 346–

352, 360–366, 404–405, 424–425, 

441–447, 469, 475, 511, 520, 556, 

561–571, 589, 612–616, 641

absolute (dependent) motion 

analysis, 338–341, 404

acceleration (a) and, 323, 

325–326, 424–425, 441–447

angular motion and, 322–323, 327, 

563–568

circular motion and, 324–327, 

360–366, 404–405

displacement and, 322, 324, 346

equations of motion for, 424–425, 

441–447, 469, 612–616, 641

Euler’s theorem for, 562

finite, 562

fixed-axis, 320, 322–329, 404, 

441–447, 469, 475, 511, 520, 

612–616

fixed-point, 561–568, 589

force (F) and, 424–425, 441–447, 469

general three-dimensional 

 motion, 564–568

impulse and momentum of, 520, 556

infinitesimal, 563

instantaneous axis of, 563–564

instantaneous center of zero 

velocity, 360–366, 405

kinetic energy and, 475, 511

line of action, 361, 425, 442

moment of inertia of, 442–443

position and, 322, 324, 346

procedures for analysis of, 327, 

338, 349, 362, 616

relative-motion analysis, 

346–352, 405

right-hand rule for, 322, 324

rigid-body planar motion and, 

320, 322–329, 338–341, 346–

352, 404–405, 424–425, 441–447, 

469, 475, 511, 520, 556

symmetrical spinning axes, 615–616

symmetry of reference frames for, 

424–425

three-dimensional rigid bodies, 

561–568, 589, 612–616, 641

time derivatives for, 564–568, 589

translation and, 338–341, 346–352

velocity (v) and, 322, 324, 

346–352, 360–366

S
s–t (position–time) graphs, 20–21

Scalar formulation of angular momen-

tum, 280, 285

Separation of contact points after 

impact, 546

Shell elements, moment of inertia  

for, 411

Simple harmonic motion, 644, 680

Sliding, 187, 389

relative-motion analysis for, 389

work of friction by, 187

Slipping, 348, 374, 456, 477, 512

circular motion and, 348, 374

equations of motion and, 456

forces that do no work, 477, 512

general plane motion, 456

relative-motion analysis and,  

348, 374

rigid-body planar motion, 477, 512

zero velocity and, 348, 477

Space cone, 634

Space mechanics, 164–170, 175, 

300–304, 315, 591–596,  

632–635, 641

central-force motion and, 

164–170, 175

circular orbit, 168

control volume of particles, 

300–304, 315

elliptical orbit, 169–170

free-flight trajectory, 166

inertia (I) and, 591–596

Kepler’s laws, 170

kinetics of particles and,  

164–170, 175
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Space mechanics (continued)

mass flow, 300–302

parabolic path, 168

power-flight trajectory, 167

propulsion, 300–304, 315

three-dimensional rigid-body  

motion and, 591–596,  

632–635, 641

thrust, 300–301

torque-free motion, 632–635, 641

trajectories, 165–170, 175

Speed, 6, 32, 57-58.  See also Magnitude

Spheres, fixed-point rotation and,  

563, 589

Spin, 626, 633

Spinning axes, equations of motion 

for, 615–616

Spring force, 121, 182–183, 213–216, 

232–233, 477, 496, 512–513, 644

conservation of energy and, 496, 513

conservative force of, 213–216

displacement by, 477

elastic potential energy and, 214, 

233, 496, 513

equations of motion for, 121

particle kinetics, 121, 182–183, 

213–216, 232–233

rigid-body planar motion, 477, 

496, 512–513

vibrations and, 644

weight and, 215–216

work of, 182–183, 213–216, 232, 

477, 496, 512

Static equilibrium, 116

Statics, study of, 3

Steady flow, 295–299, 315

angular impulse and  

momentum, 296

closed volume, 295

control volume, 295, 315

fluid streams, 295–299

linear impulse and momentum, 296

mass flow, 296–297

principles of impulse and  

momentum for, 295–299, 315

procedure for analysis of, 297

volumetric flow (discharge), 297

Steady-state vibration, 670

Symmetrical spinning axes, see  

Gyroscopic motion

Systems, 118–119, 186–192, 218, 

240–244, 282, 476, 564–568, 589

angular momentum of, 282

center of mass (G), 119

conservation of energy, 218

conservative forces and, 218

deformation in bodies, 186–187

equations of motion for, 118–119

external forces, 118–119, 240

fixed rotating, 564–568

internal forces, 118–119

kinetic energy and, 476

nonrigid bodies, 186

particle kinetics, 118–119, 

186–192, 240–244, 282

potential energy (V) and, 218

principle of impulse and 

 momentum for, 240–244

principle of work and energy for, 

186–192

rigid bodies, 186, 476,  

564–568, 589

sliding and, 187

time derivatives for, 564–568, 589

translating-rotating, 564–568, 589

work of friction and, 187

T
Tangential (t) coordinates, 56–62, 

138–143, 175, 325–326, 440–441

acceleration (a) and, 57–58, 

325–326, 440–441

circular motion components, 

325–326

curvilinear motion components, 

56–62

equations of motion and, 138–143, 

175, 440–441

particle kinetics, 138–143, 175

planar motion and, 56

procedure for analysis of, 59

rigid-body planar motion, 

325–326, 440–441

rotation about a fixed axis, 

325–326, 440–441

three-dimensional motion, 58

velocity (v) and, 56

Tangential force, 152–153, 175

Three-dimensional motion, 58, 

560–589, 590–641

angular, 561–564

angular momentum of, 601–604, 

629, 640

curvilinear, 58

equations of motion for,  

612–621, 641

Euler’s equations for, 614–615

fixed-point rotation, 561–568, 589, 

626–631

frames of reference for, 564–568

general motion of, 569–571, 589

gyroscopic motion, 615–616, 

626–631, 641

inertia, moments and products of, 

591–596, 640

inertial coordinates for, 601–602

kinematics of, 58, 560–589

kinetic energy of, 604–607, 640–641

kinetics of, 590–641

particles, 58

principle of impulse and momen-

tum, 604, 640

principle of work and energy of, 

605, 640–641

procedures for analysis of, 581, 616

rectangular (x, y, z) coordinates, 

602–603, 614–616, 641

relative-motion analysis of, 

578–585, 589

rotating axes, 564–568, 578–585, 589

time derivatives for, 564–568, 589

torque-free motion, 632–635, 641

translating axes, 578–585

translating coordinate systems 

for, 569–571

translating-rotating systems, 

564–568, 589

Thrust, 300–301

Time (t), 8, 20–21, 106, 170, 646

continuous motion and, 8

cycle, 646

erratic motion and, 20–21

graphs of variables, 20–21, 106

orbital revolution, 170

period, 646

position (s), as a function of, 8

rectilinear kinematics and, 8, 

20–21, 106

velocity (v) as a function of, 8

vibration and, 646
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Time derivatives, 74, 86, 108–109, 

564–568, 589

absolute dependent motion, 86, 109

curvilinear motion, 74, 108

fixed-point rotation, 564–568, 589

three-dimensional motion, 

564–568, 589

translating-rotating systems, 

564–568, 589

Time-differential equations, 338

Torque-free motion, 632–635, 641

Trajectories, 165–170, 175

circular orbit, 168

eccentricity of, 166–167, 175

elliptical orbit, 169–170

free-flight, 166

gravitational attraction and, 165–166

parabolic path, 168

power-flight, 167

Translating axes, 91–95, 109,  

346–352, 373–380, 405, 

564–568, 578–585, 589

acceleration (a), 92, 373–380, 580

coordinates for, 91

fixed reference frame, 91–95

kinematics of particles, 91–95, 109

observers, 91–92, 109

position vectors (r) for, 91, 346, 579

procedures for analysis of, 92, 338, 

349, 375, 581

relative-motion analysis of, 91–95, 

109, 346–352, 373–380, 405, 

578–585, 589

rigid-body planar motion, 91–95, 

109, 346–352, 373–380, 405, 

564–568, 578–585

rotation and, 338–341, 346–352, 

373–380, 404

three-dimensional rigid bodies, 

564–568, 578–585, 589

time derivatives for systems, 

564–568

translating-rotating systems, 

564–568, 589

velocity (v) of, 91, 346–352, 405, 579

Translating coordinate systems, 

569–571, 578, 589

Translation, 320–321, 338–341, 389–

397, 404–405, 423, 426–431, 469, 

475, 511, 520, 556, 612, 641

absolute (dependent) motion 

analysis, 338–341, 404

acceleration (a) and, 321, 

392–393, 404

circular motion and, 347–348

coordinate system axes,  

346–352, 404

curvilinear, 320–321, 404, 427, 469

displacement and, 346

equations of motion for, 423, 

426–431, 469, 612, 641

impulse and momentum, 520, 556

kinetic energy and, 475, 511

paths of, 320

position vectors (r), 321, 389

procedures for analysis using, 394, 

428, 616

rectilinear, 320–321, 404, 426–427, 469

relative-motion analysis,  

389–397, 405

rigid-body planar motion, 320–

321, 338–341, 389–397, 404–405, 

423, 426–431, 469, 475, 511, 

520, 556, 641

rotating axes with, 389–397, 405

symmetry of reference frames 

for, 423

three-dimensional rigid-body  

motion, 612, 641

velocity (v) and, 321, 390–391, 404

Transverse component (vu), 72

Transverse coordinate (u), 71–73

Trigonometric identities, 682

U
Unbalanced force, 113–114

Undamped vibrations, 643–651, 

663–666, 680

forcing frequency (vu) for, 

663–665, 680

forced, 663–666, 680

free, 643–651, 680

natural frequency (vn) for, 644, 

646–647, 680

periodic force and, 663–666

periodic support displacement 

of, 665

procedure for analysis of, 647

Underdamped vibration systems, 669

Unit vectors, 684

V
v–s (velocity–position) graphs, 22

v–t (velocity–time) graphs, 20–21

Variable force, work of, 180, 476

Vector analysis, 684–688

Vector formulation of angular 

 momentum, 280, 285

Vector functions, 685

Vector quantity, particle position and 

displacement as, 5, 36

Velocity (v), 6–8, 20–22, 34–37, 56, 72, 

91, 106, 164, 168, 321, 322, 324, 

346–352, 360–366, 390–391, 

404–405, 477, 544–547, 563–564, 

579, 626–628

absolute, 91, 347

acceleration (a) and, 7–8

angular (v), 72, 322, 544–547, 563, 

626–628

areal, 164

average, 6, 34

central-force motion and, 164, 168

circular motion and, 324, 347–348

constant, 7

continuous motion and, 6–8

curvilinear motion and, 34–37, 

56, 72

cylindrical components and, 72

eccentric impact and, 544–547

erratic motion and, 20–22

escape, 168

fixed-point rotation and, 322, 324, 

404, 563–564, 626–628

forces doing no work, 477

graphs of variables, 20–22, 106

gyroscopic motion and, 626–628

instantaneous, 6, 34

instantaneous center (IC) of zero, 

360–366, 405

kinematics of particles and, 6–8, 

20–22, 34–37, 56, 72, 91, 106

magnitude of, 6, 34, 36–37, 56, 72, 

390, 404

normal component (n) 

 coordinates, 56, 404

position (s), as a function of, 8

procedures for analysis of, 349, 362

radial component (vr), 72

rectangular components and, 

36–37
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Velocity (v) (continued)

rectilinear kinematics and, 6–8, 

20–22, 106

relative, 91, 347

relative-motion analysis and, 91, 

346–352, 390–391, 405, 579

rigid-body planar motion, 321, 

322, 324, 346–352, 360–366, 

390–391, 404–405, 544–547

rotating axis, 390–391, 405, 579

rotation and, 322, 324, 346–352, 

404–405

sign convention for, 6

slipping and, 348, 477

speed (magnitude), 6, 34, 36, 72

tangential component (t)  

coordinates, 56, 72, 404

three-dimensional rigid-body  

motion, 563–564, 579, 626–628

time (t), as a function of, 8

time derivative and, 564

translating axes and, 91, 346–352, 

405, 579

translation and, 321, 390–391, 404

transverse component (v ), 72

zero, 348, 360–366, 405, 477

Vertical displacement ( ), 477

Vertical projectile motion, 41–45

Vibrations, 642–681

amplitude of, 645–646

critically damped systems, 668

cycle, 646

damped, 643, 667–672, 681

displacement and, 644–651

electrical circuit analogs and,  

673, 681

energy methods for conservation 

of, 657–660, 680

equilibrium position, 644–646

forced, 643, 663–666, 670–672, 

680–681

forcing frequency (vu),  

663–666, 680

free, 643–651, 667–669, 680–681

frequency (f), 644, 646–647, 663, 669

magnification factor (MF) for, 

664–665, 671

natural frequency (vn), 644, 

646–647, 657–660, 680

overdamped systems, 668

period, 646

periodic force and, 663–666

periodic support displacement 

of, 665

phase angle ( ), 646

procedures for analysis of, 647, 658

resonance, 665, 681

simple harmonic motion of, 644

undamped forced, 663–666, 680

undamped free, 643–651, 680

underdamped systems, 666

viscous damped, 667–672, 681

Viscous damping force, 667, 681

Viscous vibration, 667–672, 681

coefficient of damping, 667

critically damped systems, 668

damped, 667–672, 681

damping force, 667

forced, 670–672, 681

free, 667–669, 681

overdamped systems, 668

steady-state, 670

underdamped systems, 669

Volume elements, integration of  

moments of inertia using, 

410–411

Volumetric flow (discharge), 297

W
Watt (W), unit of, 204

Weight (W), 115, 181, 213, 215–217, 

232–233, 477, 496, 512

conservation of energy and, 217, 

233, 496

conservative forces and displace-

ment of, 213, 215–216, 233

constant, 213

gravitational attraction and, 115

gravitational potential energy 

and, 213, 496

potential energy (V) and, 213, 

215–216, 496

spring force and, 215–216

vertical displacement (Δ) of, 477

work (U) of a, 181, 213, 215–216, 

232, 477, 496, 512

Work (U), 178–235, 472–515, 605, 

640–641

conservation of energy and, 

217–221, 233, 496–501, 513

conservative forces and,  

213–216, 233

constant force, 181, 232, 476, 512

couple moment (M), of a, 

478–479, 512

deformation and, 186–187

displacement and (Δ), 179–180, 

477–478, 512

energy (E) and, 178–235,  

472–515, 605

external, 187

force (F) as, 179–183, 186–192, 

232–233, 476–479, 512

friction caused by sliding, 187

internal, 187

kinetic energy and, 605

kinetics of a particle, 178–235

potential energy (V) and, 

213–216, 496–501, 513

potential function and, 215–216

principle of energy and, 184–192, 

232–233, 480–486, 513, 605, 

640–641

procedures for analysis of, 185, 

481, 498

rigid-body planar motion, 472–515

slipping and, 477

spring force as, 182–183, 213–216, 

232, 477, 512

system of particles, 186–192

three-dimensional rigid bodies, 

605, 640–641

units of, 180

variable force, of a, 180, 476

weight (W) as, 181, 213, 215–216, 

232, 477, 512

zero velocity and (no work), 477

Z
Zero velocity, 348, 360–366, 405, 456, 477

general plane motion, 456

instantaneous center (IC) of, 

360–366, 405

relative-motion analysis, 348

slipping (no work) and, 348, 477





KINEMATICS
Particle Rectilinear Motion
Variable a Constant a = ac

 a =
dv

dt
v = v0 + act

v =
ds

dt
 s = s0 + v0t + 1

2act 2

 a ds = v dv v2 = v2
0 + 2ac(s - s0)

Particle Curvilinear Motion
x, y, z Coordinates r, u, z Coordinates
vx = x

#
 ax = x

# #
vr = r

#
 ar = r

# # - r u2
#

vy = y
#
 ay = y

# #
vu = r u

#
 au = r u

# #
+ 2r

#
 u

#

vz = z
#
 az = z

# #
vz = z

#
 az = z

# #

n, t, b Coordinates

v = s
#

 at = v
#
= v 

dv

ds

 an =
v2

r
 r =

[1 + (dy >dx)2]3>20 d2y >dx2 0
Relative Motion
vB = vA + vB/A aB = aA + aB/A

Rigid Body Motion About a Fixed Axis
Variable a Constant a = ac

 a =
dv

dt
v = v0 + act

v =
du

dt
u = u0 + v0t + 1

2act 2

v dv = a du v2 = v2
0 + 2ac(u - u0)

For Point P

s = ur v = vr at = ar an = v2r

Relative General Plane Motion—Translating Axes
vB = vA + vB>A (pin)  aB = aA + aB>A (pin)

Relative General Plane Motion—Trans. and Rot. Axis
vB = vA + � * rB>A + (vB>A)xyz

aB = aA + �
#

 * rB>A + � * (� * rB>A) +
 2� * (vB>A)xyz + (aB>A)xyz

KINETICS

Mass Moment of Inertia I = L  r2 dm

Parallel-Axis Theorem I = IG + md2

Radius of Gyration k = A
I
m

Equations of Motion
Particle �F = ma
Rigid Body 
(Plane Motion)

�Fx = m(aG)x

�Fy = m(aG)y

�MG = IGa or �MP = �(mk)P

Principle of Work and Energy
T1 + �U1- 2 = T2

Kinetic Energy
Particle  T = 1

2mv2

Rigid Body (Plane Motion) T = 1
2mv2

G + 1
2IGv

2

Work
Variable force  UF = L F cos u   ds

Constant force  UF = (Fc cos u) � s
Weight   UW = - W �y
Spring  Us = - 11

2 ks 22 - 1
2 ks 212

Couple moment   UM = M�u

Power and Efficiency

P =
dU

dt
= F # v    e =

Pout

Pin

=
Uout

Uin

Conservation of Energy Theorem
T1 + V 1 = T2 + V 2

Potential Energy
V = V g + V e, where V g = {Wy, V e = +1

2 ks2

Principle of Linear Impulse and Momentum

Particle  mv1 + � LF dt = mv2

Rigid Body  m(vG)1 + � LF dt = m(vG)2

Conservation of Linear Momentum
�(syst. mv)1 = �(syst. mv)2

Coefficient of Restitution e =
(vB)2 - (vA)2

(vA)1 - (vB)1

Principle of Angular Impulse and Momentum

Particle  (HO)1 + � LMO dt = (HO)2

where HO = (d)(mv)

Rigid Body 
(Plane motion)

 (HG)1 + � LMG dt = (HG)2

where HG = IGv

 (HO)1 + � LMO dt = (HO)2

where HO = IOv
Conservation of Angular Momentum
�(syst. H)1 = �(syst. H)2

 Fundamental Equations of Dynamics



SI Prefixes

Multiple Exponential Form Prefix SI Symbol

1 000 000 000 109 giga G

1 000 000 106 mega M

1 000 103 kilo k

Submultiple

0.001 10−3 milli m

0.000 001 10−6 micro μ

0.000 000 001 10−9 nano n

Conversion Factors (FPS) to (SI)

Quantity
Unit of 

Measurement (FPS) Equals
Unit of 

Measurement (SI)

Force lb  4.448 N

Mass slug  14.59 kg

Length ft  0.3048 m

Conversion Factors (FPS)

 1 ft = 12 in. (inches)

 1 mi. (mile) = 5280 ft

 1 kip (kilopound) = 1000 lb

 1 ton = 2000 lb



Centroid Location Centroid Location Area Moment of Inertia

r sin u

r
u

u C

y

x

L � 2ur

u

Circular arc segment

 r sin u

r

C

A � ur2

2
3

y

x

u

u

u

Circular sector area

Ix = 
1

4
 r4 (u – 

1

2
 sin 2u)

Iy = 
1

4
 r4(u + 

1

2
 sin 2u)

C

L � r2
–

2r—

L � pr

C

p

rr
p

Quarter and semicircle arcs

C

y

x

r
4r
3p
—

4r
3p
—

A �   pr 21
4

Quarter circle area

Ix = 
1

16
 πr4

Iy = 
1

16
 πr4

b

h

a A

x
C

�   h (a � b)1
2

1
3

2
a � b
a � b h–

–

Trapezoidal area

y
A �

xC

p
2

r
4r
3p

r2

—

—–

Semicircular area

Ix = 
1

8
 πr4

Iy = 
1

8
 πr4

Ca

A� ab2
3

b3
8
–

–

– a3
5

b

Semiparabolic area

y

x
C

r

A � pr2

Circular area

Ix = 
1

4
πr4

Iy = 
1

4
πr4

a

b
C

A ab�

a3–
4

b3
10
—

1
3
—

Exparabolic area

b

h

y A � bh

x
C

Rectangular area

Ix = 
1

12
bh3

Iy = 
1

12
hb3

b
C

a

a2
5
—

A ab= 4
3
—

Parabolic area

b

h C

A �   bh

x
h1

3

1
2

–

–

Triangular area

Ix = 
1

36
bh3

Geometric Properties of Line and Area Elements



G

x

y

z

rV� r 34
3π–

Sphere

Ixx = Iyy = Izz = 
2

5
 mr2

G

x

y

z

r

V � r 32
3
–

r3–
8

p

Hemisphere

Ixx = Iyy = 0.259 mr2 Izz = 
2

5
 mr2

G

x

y

z
z'

r

Thin Circular disk

Ixx = Iyy = 
1

4
 mr2 Izz = 

1

2
 mr2 Iz¿z¿ = 

3

2
 mr2

G

x

y

r

z

Thin ring

Ixx = Iyy = 
1

2
 mr2 Izz = mr2

x

y

z

V � r 2π
h–
2

h–
2

G
h

r

Cylinder

Ixx = Iyy = 
1

12
 m(3r2 + h2) Izz = 

1

2
 mr2

h

V � hr 21
3
π– h–

4G

x

y

z

r

Cone

Ixx = Iyy = 
3

80
 m(4r2 + h2) Izz = 

3

10
 mr2

x

y

z

a
b

G

Thin plate

Ixx = 
1

12
 mb2 Iyy = 

1

12
 ma2 Izz = 

1

12
 m(a2 + b2)

G

x¿

y

y¿

z

x

2

2
l

l

Slender Rod

Ixx = Iyy = 
1

12
 ml2  Ix¿x¿ = Iy¿y¿ = 

1

3
 ml2  Iz¿z¿ = 0

Center of Gravity and Mass Moment of Inertia of Homogeneous Solids
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