Biostatistics II

Dr Vedaste Ndahindwa

University of Rwanda School of Public Health

Ndahindwa (SPH) Biostatistics 1 / 21

Outline

Contents

- Nonparametric Analysis
 - Why nonparametric analysis?
 - One sample median test
 - Wilcoxon signed-rank test
 - Two-sample Wilcoxon rank-sum (Mann-Whitney) test

Ndahindwa (SPH) Biostatistics 2 / 21

2

Tests of means covered so far

Compare a mean from one group to a constant:

- One sample z-test (variance known)
 - Assumes that the sample mean is normally distributed, with mean μ , and variance σ^2/n
- One sample t-test (variance unknown)
 - Assumes that the sample mean is normally distributed, with mean μ , and variance σ^2/n
 - Assumes that the test statistic, standardized using the sample variance, s^2 , follows a t-distribution with n-1 degrees of freedom

Ndahindwa (SPH)

Biostatistics

3 / 21

Nonparametric Analysis

Why nonparametric analysis?

Tests of means covered so far

Compare a mean from one group to mean of another group (paired):

- Paired t-test (variance unknown)
 - Assumes that the sample mean of the differences is normally distributed, with mean μ_d , and variance σ^2/n
 - Assumes that the test statistic, standardized using the sample variance, s^2 , follows a t-distribution with n-1 degrees of freedom (with n being number of observations per group)

Ndahindwa (SPH) Biostatistics 4 / 21

Tests of means covered so far

Compare a mean from one group to mean of another group (unpaired):

- Two-sample t-test
 - Assumes that the sample means of each group is normally distributed, with mean μ_1 and μ_2 and variance σ_1^2/n_1 and σ_2^2/n_2
 - Assumes that the test statistic, standardized using the sample variances, s_1^2 and s^2-2 , follows a t-distribution with ν degrees of freedom (ν depends on whether assume variance are equal)

Ndahindwa (SPH)

Biostatistics

5 / 21

Nonparametric Analysis

Why nonparametric analysis?

Distributional assumptions

All of these test make an assumption about the sample means – that they are approximately normally distributed.

The **t-test** also relies on the assumption that your underlying population is normal.

Ndahindwa (SPH) Biostatistics 6 / 21

What about non-normal population, or small samples?

If you have small samples and/or an underlying distribution that is not normal, you may not want to make the necessary assumptions.

In this case, we can rely on a set of **nonparametric tests** - tests that do not have assumptions about the distributions of parameters

Ndahindwa (SPH)

Biostatistics

7 / 21

Nonparametric Analysis

One sample median test

One sample median test

After the change in HIV treatment guidelines, the goal is for patients to come before their CD4 is below 200.

We have a sample of 15 patients starting treatment at our ART clinics.

Using this data we want to test the hypothesis that the median CD4 count at initiation is different from 200.

• H_0 : median = 200

• H_a : median \neq 200

Ndahindwa (SPH) Biostatistics 8 / 21

One sample median test

Individual	CD4 baseline	Hypothesized median	Difference	Sign
1	147	200	-53	-
2	115	200	-85	-
3	144	200	-56	-
4	255	200	55	+
5	231	200	31	+
6	128	200	-72	-
7	253	200	53	+
8	366	200	166	+
9	221	200	21	+
10	115	200	-85	-
11	75	200	-125	-
12	53	200	-147	-
13	204	200	4	+
14	282	200	82	+
15	291	200	91	+
Ndahindwa	(SPH)	Biostatistics		

Nonparametric Analysis

Wilcoxon signed-rank test

Sign Rank Test

Step 1: Calculate the difference (d_i) between observations and hypothesized medians and rank according to the magnitude of the differences

Step 2: Sum the ranks of the positive differences (T)

Step 3: Calculate the test statistic

$$z = \frac{T - [n(n+1)/2]/2}{\sqrt{Var(ranks)}}$$

where: $Var(ranks) = \frac{\sum_{i=1}^{n} r_i^2}{4}$ where $(d_i \neq 0)$

Step 4: Compare to standard normal.

Ndahindwa (SPH) Biostatistics 10 / 21

	Nonparametric Analysis W		Wilcoxon signe	ed-rank test			
No	CD4	Hypoth.	Difference	Absolute	Rank	Sign	Rank
	baseline	median		value			squared
1	147	200	-53	53	4.5	-	20.25
2	115	200	-85	85	10.5	_	110.25
3	144	200	-56	56	7	_	49
4	255	200	55	55	6	+	36
5	231	200	31	31	3	+	9
6	128	200	-72	72	8	_	64
7	253	200	53	53	4.5	+	20.25
8	366	200	166	166	15	+	225
9	221	200	21	21	2	+	4
10	115	200	-85	85	10.5	_	110.25
11	75	200	-125	125	13	_	169
12	53	200	-147	147	14	_	196
13	204	200	4	4	1	+	1
14	282	200	82	82	9	+	81
15	291	200	91	91	12	+	144
			Sum of F	Pos Ranks	52.5		
			Sum of N	leg Ranks	67.5		
				of Ranks	309.75		

Ndahindwa (SPH)

Biostatistics

11 / 21

Nonparametric Analysis

Wilcoxon signed-rank test

Sum of Pos Ranks	52.5	
Sum of Neg Ranks	67.5	
Var of Ranks	309.75	

$$z = \frac{52.5 - (15 * 16/2)/2}{\sqrt{309.75}} = -0.426$$
$$P(|z| > 0.426) = 0.670$$

Ndahindwa (SPH) Biostatistics 12 / 21

Stata Output

. signrank cd4=200

Wilcoxon signed-rank test

sign	obs	sum ranks	expected
positive	8	52.5	60
${\tt negative}$	7	67.5	60
zero	0	0	0
all	15	120	120

unadjusted	variance	310.00
adjustment	for ties	-0.25
adjustment	for zeros	0.00
adjusted va	riance	309.75

Ho:
$$cd4 = 200$$

$$z = -0.426$$

Prob > $|z| = 0.6700$

Ndahindwa (SPH)

Biostatistics

13 / 21

Nonparametric Analysis

Wilcoxon signed-rank test

Two sample paired non-parametric tests

We use the same tests – sign test and signed-rank test – for paired data, but now applied to differences between pairs.

We have a sample of 15 patients starting treatment at our ART clinics.

Using this data we want to test the hypothesis that the median CD4 count at initiation is different from after one-year of treatment.

• H_0 : $median_1 = median_2$

• H_a : $median_1 \neq median_2$

Ndahindwa (SPH) Biostatistics 14 / 21

No	CD4 baseline	CD4 year1	Difference
1	147	765	618
2	115	298	183
3	144	157	13
4	255	731	476
5	231	453	222
6	128	177	49
7	253	716	463
8	366	866	500
9	221	353	132
10	115	282	167
11	75	242	167
12	53	167	114
13	204	993	789
14	282	375	93
15	291	614	323

Ndahindwa (SPH) Biostatistics 15 / 21

Nonparametric Analysis

Wilcoxon signed-rank test

Stata Output

. signrank cd4baseline= cd4year1

Wilcoxon signed-rank test

sign	obs	sum ranks	expected
positive	0	0	60
negative	15	120	60
zero	0	0	0
all	15	120	120

unadjusted variance 310.00 -0.13 adjustment for ties adjustment for zeros 0.00 adjusted variance 309.88

Ho: cd4baseline = cd4year1 z = -3.408

Prob > |z| =0.0007

Ndahindwa (SPH) 16 / 21

What about unmatched data?

Suppose we want to know if the median baseline CD4 differs between men and women.

We have a sample of 20 randomly sampled individuals -11 women, 9 men

- H_0 : $median_1 = median_0$
- H_a : median₁ \neq median₀

Patient	Female	CD4y0
1	0	147
2	1	115
3	0	144
4	1	194
5	0	255
6	1	231
7	0	128
8	0	253
9	0	112
10	1	176
11	0	366
12	1	221
13	1	115
14	1	75
15	1	53
16	1	204
17	1	85
18	0	329
19	1	282
20	0	33

Ndahindwa (SPH)

Biostatistics

17 / 21

Nonparametric Analysis

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

Wilcoxon Rank Sum Test

Step 1: Order outcomes and assign ranks by order

Step 2: Sum ranks by group

- Group 0 = T0
- Group 1= T1

Step 3: Calculate the test statistic

$$z = \frac{T_1 - n_1(n_1 + n_0 + 1)/2}{\sqrt{n_1(n_0)s^2/(n_1 + n_0)}}$$

where
$$s^2 = \frac{sum_{i=1}^{n_1+n_0}(r_i-\overline{r})^2}{n_1+n_0-1}$$

Step 4: Compare to standard normal

Ndahindwa (SPH) Biostatistics 18 / 21

Nonparametric Analysis Two-sample Wilcoxon rank-sum (Mann-Whitney)			nple Wilcoxon rank-sum (Mann-Whitney) test		
Patient	Female	CD4y0	Ranks	$(r_i - \overline{r})^2$	
20	0	33	1	100	
15	1	53	2	81	
14	1	75	3	64	
17	1	85	4	49	
9	0	112	5	36	
2	1	115	6.5	20.25	
13	1	115	6.5	20.25	
7	0	128	8	9	$\frac{105-11(11+9+1)}{2}$
3	0	144	9	4	/
1	0	147	10	1	$\sqrt{11(9)35.2/(11+9)}$
10	1	176	11	0	
4	1	194	12	1	z = -0.795
16	1	204	13	4	2 0.133
12	1	221	14	9	
6	1	231	15	16	
8	0	253	16	25	
5	0	255	17	36	P(z > 0.795) = 0.424
19	1	282	18	49	
18	0	329	19	64	
11	0	366	20	81	
Sum of (G0 Ranks	105			
Sum of (G1 Ranks	105			
Ave	rage rank	11			

Ndahindwa (SPH)

 S^2

Biostatistics

19 / 21

Nonparametric Analysis

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

Stata Output

. ranksum cd4y0, by(female)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

35.23684

expected	rank sum	obs	female
94.5 115.5	105 105	9 11	0
210	210	20	combined

unadjusted variance 173.25 adjustment for ties -0.13 ------- adjusted variance 173.12

Ho:
$$cd4y0(female==0) = cd4y0(female==1)$$

 $z = 0.798$
 $Prob > |z| = 0.4249$

Ndahindwa (SPH) Biostatistics 20 / 21

/ 2

Parametric versus Nonparametric Tests

Parametric Tests

- Used if the underlying distributions of the data are known or can be assumed to be normally distributed
- ullet μ and σ are known as **parameters** of a population

Nonparametric Tests

- Used if the underlying distributions of the data are unknown or are not normally distributed
- Fewer assumptions about the underlying distribution
 - Wilcoxon Rank-sum test assumes same shape
- Compares medians rather than means

21