Modeling

Class 1: Multiple Linear Regression

Vedaste Ndahindwa

Linear Regression Line

Population regression model:

$$\mu_{Y|X} = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots \beta_q X_q$$

Fitted regression model:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots \beta_q X_q + \varepsilon$$

• In these models, Y is a continuous response variable.

Multiple regression

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_k X_k + \varepsilon$$

(individual regression model)

 The value of Y is now a function of multiple covariates.

Model Framework

- $-\mu_{Y|X1,X2,...,Xk}$ is <u>linear</u> in $X_1, X_2, ..., X_k$
- The residuals are homoscadastic ($\sigma_{Y|X1,X2,...,Xk}$ are constant)
- For fixed covariates, X₁, X₂, ..., X_{k,} Y is <u>normally</u> distributed with
 - mean, $\mu_{Y|X1,X2,...,Xk}$
 - standard deviation, $\sigma_{Y|X1,X2,...,Xk}$
- Observations are <u>independent</u>

. regress sysbp age heartrate

Source	SS	df	MS		Number of obs	_
Model Residual	27386.2231 4373.77576		93.1115		F(2, 22) Prob > F R-squared Adj R-squared	= 68.88 $= 0.0000$ $= 0.8623$ $= 0.8498$
Total	31759.9988	24 1323	3.33329		Root MSE	= 14.1
sysbp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age heartrate _cons	1.95156 8748746 200.6998	.3208844 .1368827 21.68584	6.08 -6.39 9.25	0.000	1.286087 -1.158752 155.7261	2.617034 5909973 245.6735

$$\hat{Y} = SBP = 200.7 + 1.95age + -0.875heartrate$$

Special case of "dummy" variables

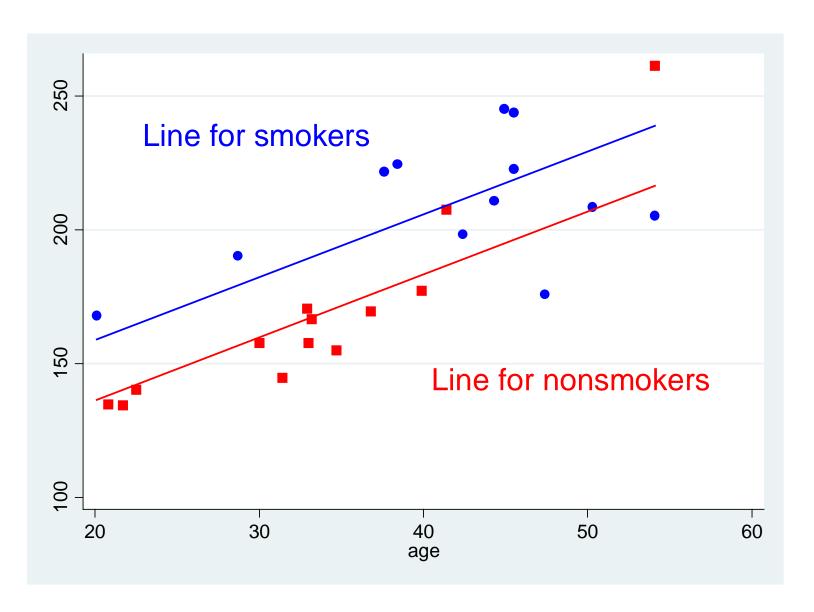
. regress sysbp age smoke

Source	SS	df	MS		Number of obs	= 25
		 			F(2, 22)	= 24.26
Model	21850.9395	2 1092	5.4698		Prob > F	= 0.0000
Residual	9909.05934	22 450.	411788		R-squared	= 0.6880
					Adj R-squared	= 0.6596
Total	31759.9988	24 1323	.33329		Root MSE	= 21.223
	•					
	<u></u>					
sysbp	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
		 	 	 		
age	2.35224	.4808594	4.89	0.000	1.354998	3.349481
smoke	22.51094	9.394599	2.40	0.026	3.027734	41.99415
_cons	89.26089	17.04286	5.24	0.000	53.91616	124.6056

$$\hat{Y} = SBP = 200.7 + 2.35age + 22.5smoke$$

Dummy variables

- Take on two values
- Result in two linear models, one for when dummy=0 and one for when dummy=1
- For smoke =0
 - -SBP = 200.7 + 2.35age + 22.5 * 0
 - -SBP = 200.7 + 2.35age
- For smoke =1
 - -SBP = 200.7 + 2.35age + 22.5 * 1
 - -SBP = 223.2 + 2.35age



What about interactions?

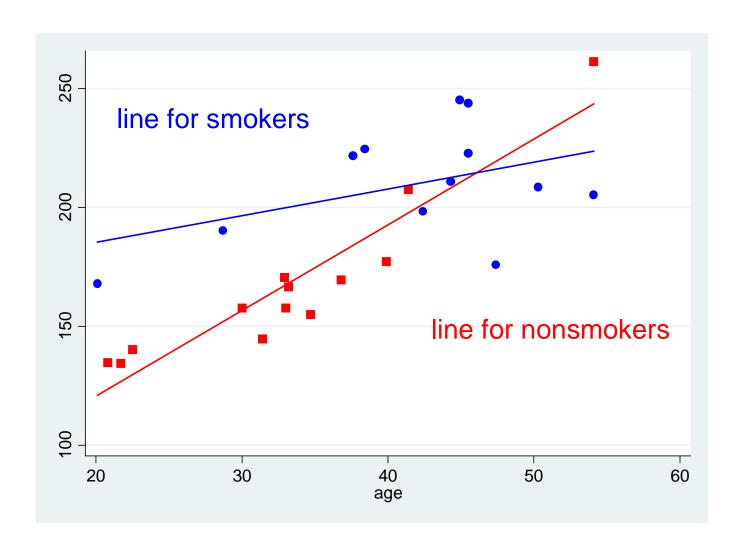
- . generate age_smoke=age*smoke
- . regress sysbp age smoke age_smoke

Source	SS	df	MS		Number of obs	= 25
					F(3, 21)	= 24.84
Model	24777.0793	3 8259	0.02643		Prob > F	= 0.0000
Residual	6982.91956	21 332	519979		R-squared	= 0.7801
					Adj R-squared	= 0.7487
Total	31759.9988	24 1323	3.33329		Root MSE	= 18.235
'	•					
la						
sysbp	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
gyspp ——————	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	Coef. 3.572543	.5830324	6.13	P> t 0.000	[95% Conf. 2.360061	Interval] 4.785025
age	3.572543	.5830324	6.13	0.000	2.360061	4.785025

$$\hat{Y} = SBP = 48.7 + 3.57age + 114.3smoke + -2.45age_smoke_{g}$$

Dummy variables with interactions

- Take on two values
- Result in two linear models, one for when dummy=0 and one for when dummy=1
- For smoke =0
 - -SBP = 48.7 + 3.57age + 114.3 * 0 + -2.45 * age * 0
 - -SBP = 48.7 + 3.57age
- For smoke =1
 - -SBP = 48.7 + 3.57age + 114.3 * 1 + -2.45 * age * 1
 - -SBP = 163.0 + 1.12age



Building models

- Look at predictor variables one at a time with outcomes to see what is significant.
- Look at interactions to see what is significant.
- Forward selection
 - 1. Start with most significant predictor.
 - 2. Add next most significant predictor.
 - 3. Keep adding until there are no more significant predictors.
- Backward selection
 - 1. Start with everything in the model.
 - 2. Drop least significant predictor.
 - 3. Keep dropping until only significant predictors remain.

Final model

What gets dropped?

 Collinearity – Two or more variables are highly correlated and essentially convey the same information.

Can non-significant things remain?

 If a variable is a not significant predictor of the outcome but changes (confounds) the relationship between another predictor and outcome, then it often will be kept in the model.